WEB OF SCIENCE
SCOPUS
Recently,inpowersystem studies,MultipleEnergyCarriers(MECs)suchasEnergyHubhasbeen
broadlyutilizedinpowersystem plannersandoperators.Particularly,EnergyHubperformsoneofthemost
importantroleastheintermediateinimplementingtheMECs.However,itstillneedstobeputunderexamination
inbothmodelingandoperatingconcerns.Forinstance,aprobabilisticoptimizationmodelistreatedbyarobust
globaloptimization techniquesuch asmulti-agentgeneticalgorithm (MAGA)which can supporttheonline
economicdispatchofMECs.MAGA alsoreducestheinevitableuncertaintycausedbytheintegrationofselected
inputenergycarriers.However,MAGA onlyconsiderscurrentstateoftheintegrationofselectedinputenergy
carriersinconjunctivewiththeconditionofsmartgridenvironmentsfordecisionmakinginEnergyHub.Thus,
inthispaper,weproposeanimmunealgorithm basedMultipleEnergyCarriersSystem whichcanadoptthe
learningprocessinordertomakeaselfdecisionmakinginEnergyHub.Inparticular,theproposedimmune
algorithm considersthepreviousstate,thecurrentstate,andthefuturestateoftheselectedinputenergycarriers
inordertopredictthenextdecisionmakingofEnergyHubbasedontheprobabilisticoptimizationmodel.The
below figureshowstheproposedimmunealgorithm basedMultipleEnergyCarriersSystem.Finally,wewill
comparetheonlineeconomicdispatchofMECsoftwoalgorithmssuchasMAGA andimmunealgorithm based
MECsbyusingRealTimeDigitalSimulator(RTDS).