Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor Lee, Ho Chun -
dc.contributor.author Kang, Sung Jin -
dc.date.accessioned 2017-05-10T08:50:13Z -
dc.date.available 2016-05-18T00:00:00Z -
dc.date.issued 2014 -
dc.identifier.uri http://dgist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002262534 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/1342 -
dc.description.abstract This study investigated the effects of HF, an impurity in LiPF6 electrolytes, on redox reactions of graphite anodes for the lithium-ion batteries (LIBs) and electrolyte solution for magnesium-ion batteries were developed, based on sulfone group solution, non-Grignard reagents.
In the first place, it is found that pyrolytic graphite edge plane electrode (PGE) presents reversible Li+ transport behavior in LiClO4 solution, but suppressed intercalation/de-intercalation reaction in LiPF6 electro-lyte. The sluggish intercalation/de-intercalation reaction in LiPF6 is progressed by adding a HF scavenger, whereas the facile intercalation/de-intercalation reaction in LiClO4 is depressed by adding HF. In addition, the Li+ transport in LiPF6 is enhanced by decreasing electrolyte volume or by increasing PGE surface area. These behaviors are attributed to the HF-induced formation of LiF layer on graphite anode surface, which is facilitated at high ratio of electrolyte volume to electrode area (V/A ratio). The electrolyte-volume-to-electrode-area ratio affects the Li+ transport behavior of the graphite composite electrodes for commercial grade LIBs. This study explains on an age-old question: why Li+ transport behavior of graphite anode in LiPF6 is suppressed in flooded cells, but not in commercial LIBs. Areas of electrode surface were carried out by double-layer capacitances (Cdl) which related to a fraction of edge (fe).
Lastly, it is necessary that new electrolyte of reversible magnesium system is developed instead of Grignard-based because of its unstable chemically and electrochemically. Sulfone-based solutions are one of good can-didates. Dialkyl sulfones (R1R2SO2) such as dipropyl sulfone (DPSO2), ethyl-methyl sulfone (EMSO2) and dibutyl sulfone (DBSO2) were performed with conventional magnesium salt (MgCl2) in CVs. Eutectic of sulfone-based electrolyte and co-solvent with sulfone electrolyte were performed. Especially, cell perfor-mances were enhanced when adding tetrahydrofuran (THF) in dialkyl sulfone electrolyte by volume ration one to one (1/1 = v/v). The high performance sulfone electrolyte such as DPSO2 and DPSO2/THF were com-pared with their characteristics such as ionic conductivity. Ionic conductivity is improved with adding THF in sulfone solution. Besides the study of cathode materials and current collectors, incompatibility between the electrolytes, which may be related to the chemical instability of the Grignard reagent-based electrolyte, is also critical issues for rechargeable Mg battery with a good performance. Therefore, understanding the electro-chemical behavior of current collectors and synthesis of stable electrolyte are critical for Mg batteries.

ⓒ 2014 DGIST
-
dc.description.tableofcontents Ⅰ. INTRODUCTION 1--
1.1 Li-ion battery: Suppressive effects of electrolyte-volume to electrode-area ratio (V/A ratio) on redox behaviors of graphite anodes 1--
1.2 Mg-ion battery: Sulfone electrolytes for rechargeable magnesium system 3--
Ⅱ. EXPERIMENTAL 7--
2.1 Li-ion battery 7--
2.1.1 Chemicals 7--
2.1.2 Electrochemical measurements 7--
2.2 Mg-ion battery 8--
2.2.1 Chemicals 8--
2.2.2 Electrochemical measurements 8--
Ⅲ. RESULTS AND DISCUSSION 10--
3.1 Li-ion battery 10--
3.1.1 Li salt effects on the Li+ ion transport behavior of PGE: LiPF6 vs. LiClO4 10--
3.1.2 Effects of the V/A area ratio (V/A ratio) 12--
3.1.3 XPS 15--
3.1.4 Area comparison by double-layer capacitances (Cdl) of emery-PGE and alumina-PGE 17--
3.1.5 Proposed mechanism dependence on the V/A ratio 19--
3.1.6 Comparison theoretical capacity with experimental capacity of graphite composite 20--
3.2 Mg-ion battery 23--
3.2.1 Searching for reversible Mg electrolyte 23--
3.2.2 Dialkyl sulfone-based electrolytes 24--
3.2.3 Eutectic: dialkyl sulfones used for co-solvent electrolyte 28--
3.2.4 Dialkyl sulfones with THF (1/1, vol) electrolyte 32--
3.2.5 Comparison efficiencies with volume changing of DPSO2 and THF 34--
3.2.6 Characteristics of DPSO2 vs. DPSO2/THF (1/1) and ionic conductivity 36--
3.2.7 CVs and coin cell test of Chevrel phase cathode electrode with DPSO2/THF solu-tion 37--
3.2.8 Corrosion of current collectors in DPSO2/THF electrolyte 40--
Ⅳ. CONCLUSION 42--
4.1 Li-ion battery 42--
4.2 Mg-ion battery 42
-
dc.format.extent 43 -
dc.language eng -
dc.publisher DGIST -
dc.subject Li-ion batteries -
dc.subject HF -
dc.subject LiF -
dc.subject Mg-ion batteries -
dc.subject Sulfone electrolyte -
dc.title Investigations on Interfacial Reactions of Electro-lytes on Carboneous and Magnesium Anodes for Rechargeable Lithium and Magnesium Batteries -
dc.title.alternative 리튬 및 마그네슘 이차전지용 카본과 마그네슘 음극에서의 전해액 계면 연구 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.2262534 -
dc.description.alternativeAbstract 리튬 이온전지의 흑연 음극에서의 충방전 반응이 LiPF6 전해액에서 발생하는 HF에 의해 어떻게 영향을 받는지에 대한 연구와 마그네슘 이온전지에서 작동하는 그리냐르계 전해액이 아닌 sulfone계 전해액을 개발하여 대한 연구이다.
첫 번째로, PGE전극에서 LiClO4 전해액 사용 시 리튬이온의 이동특성은 가역적으로 나오지만 LiPF6 전해액 사용시에는 리튬 삽입/탈리 반응이 점차 줄어드는 것을 발견하였다. LiPF6의 이런 느린 삽입/탈리 반응이 HF 억제제 첨가에서는 향상되었고 반면에 LiClO4 전해액에 HF 첨가에는 오히려 삽입/탈리 반응이 줄어드려 버렸다. 또한 LiPF6전해액에서 전해액의 양이 줄어들거나, PGE전극의 표면적이 늘어났을 때 리튬 이온 이동성이 증가하였다. 전해액 양과 전극 표면적 비가 높으면 HF에 의한 음극 표면의 LiF 생성을 쉽게 만드는 것으로 보여진다. 전해액 양/전해액 표면적 비는 일반 상용 흑연음극에서도 리륨 이온 이동성에 영향을 주었다. 이번 연구를 통해서 오랜 궁금증이었던 ‘LiPF6전해액에서 상업적인 리튬전지에선 보이지 않는 리튬 이온 이동성 억제가 실험실의 충분한 전해액 상황에서는 일어나는 이유’에 대해 설명을 해준다.
다음으로, 화학적, 전기화학적 안전성이 취약한 그리냐르계 전해액이 아닌 가역적인 마그네슘 배터리 시스템을 위한 전해액 개발 필요에 대한 연구이다. Sulfone계 전해액이 여기에서 3전극 실험을 통해 CV (cyclic voltammogram) 특성이 연구되었다. dipropyl sulfone (DPSO2) 및 ethyl-methyl sulfone (EMSO2) 등의 전해액에 MgCl2 염을 사용하여 특성들이 연구되었다. 특히 DPSO2 전해액에 tetrahydrofuran (THF)을 첨가하였을 때 CV 특성 및 이온전도도가 확연히 증가하는 것을 확인 할 수가 있었다. 그리고 코인셀 실험 결과 이 전해액에서 양극재, Mo6S8과 가역적으로 구동되는 것을 확인하였다. 산화쪽 전압에서 여러 집전체 금속들이 산화하는 모습들을 확인하였는데, Ni 금속을 사용하면 산화전압에 우수한 특성을 보이는 것을 확인하였다. ⓒ 2014 DGIST
-
dc.description.degree Master -
dc.contributor.department Energy Systems Engineering -
dc.contributor.coadvisor Kim, Jae Hyeon -
dc.date.awarded 2014. 2 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.date.accepted 2016-05-18 -
dc.contributor.alternativeDepartment 대학원 에너지시스템공학전공 -
dc.contributor.affiliatedAuthor Kang, Sung Jin -
dc.contributor.affiliatedAuthor Lee, Ho Chun -
dc.contributor.affiliatedAuthor Kim, Jae Hyeon -
dc.contributor.alternativeName 강성진 -
dc.contributor.alternativeName 이호춘 -
dc.contributor.alternativeName 김재현 -
Files in This Item:
000002262534.pdf

000002262534.pdf

기타 데이터 / 2.02 MB / Adobe PDF download
Appears in Collections:
Department of Energy Science and Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE