Detail View

Investigation of homogeneity in microstructure and thermoelectric properties at various positions in high-thickness sintered bulks of p-type 20%Bi2Te3–80%Sb2Te3 alloys
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Investigation of homogeneity in microstructure and thermoelectric properties at various positions in high-thickness sintered bulks of p-type 20%Bi2Te3–80%Sb2Te3 alloys
Issued Date
2021-06
Citation
Madavali, Babu. (2021-06). Investigation of homogeneity in microstructure and thermoelectric properties at various positions in high-thickness sintered bulks of p-type 20%Bi2Te3–80%Sb2Te3 alloys. Journal of Materials Science: Materials in Electronics, 32(12), 16302–16310. doi: 10.1007/s10854-021-06178-w
Type
Article
Keywords
LARGE-SCALE PRODUCTIONPERFORMANCESB
ISSN
0957-4522
Abstract
Thermoelectric devices are environmentally friendly renewable energy sources that use waste heat to generate electricity. So far, p-type Bi–Sb–Te-based alloys with high thermoelectric properties were fabricated using low-dimensional and single growth methods as small-scale, laboratory-grown samples. However, large-scale fabrication processes are required for commercial applications of thermoelectric devices. In this work, large amounts (2–3kg) of p-type 20%Bi2Te3–80%Sb2Te3 alloy powders were fabricated using the gas atomization (GA) process under an inert gas atmosphere. Subsequently, a large-scale sample, 64mm thick and 25mm in diameter, was consolidated from the as-fabricated GA powders using spark plasma sintering at 673K. The homogeneity of the microstructure, density, thermoelectric properties, and mechanical properties of the high-thickness sintered bulk were systematically investigated at various positions. The EBSD texture analysis revealed that an almost similar microstructure existed in all positions of the bulk sample, which was comprised of a mixture of coarse grains and fine grains randomly distributed throughout the matrix. The peak electrical conductivity of 1100 Ω−1cm−1 was obtained from the top position of the thick sample, which had a relatively higher carrier mobility. The maximum power factor of 3.96 mW/mK2 was achieved by the top part of the specimen, because of its higher electrical conductivity. The lowest thermal conductivity of 0.964W/mK at 350K was obtained from the bottom part of the specimen. As a result, the maximum figure of merit, ZT of 1.25 was achieved in the bottom position of the high-thickness sample. Homogeneous (within 5% of variation) thermoelectric transport properties were observed throughout the fabricated high-thickness sintered sample, regardless of position. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
URI
http://hdl.handle.net/20.500.11750/13752
DOI
10.1007/s10854-021-06178-w
Publisher
Springer
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김동환
Kim, Dong Hwan김동환

Division of Nanotechnology

read more

Total Views & Downloads