Cited 0 time in
Cited 1 time in
Tunable solid electrolyte interphase formation on SiO anodes using SnO artificial layers for Lithium-ion batteries
- Title
- Tunable solid electrolyte interphase formation on SiO anodes using SnO artificial layers for Lithium-ion batteries
- Authors
- Baek, Seong-Ho; Jeong, Young-Min; Shin, Chul Seung; Choi, Joon Byung; Han, Hwan Jeong
- DGIST Authors
- Baek, Seong-Ho; Jeong, Young-Min; Shin, Chul Seung; Choi, Joon Byung; Han, Hwan Jeong
- Issue Date
- 2021-05
- Citation
- Applied Surface Science, 549, 149028
- Type
- Article
- Author Keywords
- Artificial layer; Atomic layer deposition; Lithium-ion batteries; Silicon monoxide; Solid electrolyte interphase
- ISSN
- 0169-4332
- Abstract
- In this study, we investigated the effects of SnO artificial layer on the solid electrolyte interphase (SEI) in SiO anodes by varying the layer thickness via the atomic layer deposition technique. Two major SEI components, namely LiF and Li2CO3, were obtained from the electrolyte decomposition, which appeared on the anode surface depending on the artificial SnO–layer thickness. Experimental results revealed that the excellent interfacial kinetics of the SnO-100 sample originated from the multi-component SEI suppressing the electrolyte decomposition. The thickness of the SnO artificial layer was optimized based on the electrochemical performance. Therefore, it can be inferred that artificial layer on anodes provides an efficient way to control the SEI composition and improves the electrochemical activities of the anode materials. © 2021 Elsevier B.V.
- URI
- http://hdl.handle.net/20.500.11750/13818
- DOI
- 10.1016/j.apsusc.2021.149028
- Publisher
- Elsevier BV
- Related Researcher
-
- Files:
There are no files associated with this item.
- Collection:
- Division of Energy Technology1. Journal Articles
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.