Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor Hong, Seung Tae -
dc.contributor.author Hyoung, Joo Eun -
dc.date.accessioned 2017-05-10T08:51:35Z -
dc.date.available 2020-02-28T09:21:29Z -
dc.date.issued 2015 -
dc.identifier.uri http://dgist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001923055 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/1404 -
dc.description.abstract Rechargeable magnesium battery has been getting attention due to its various advantages such as non-toxicity, low cost, double-capacity than monovalent ion’s one, and ensuring safety by non-dendritic formation on magnesium metal surface. To realize the good points, researches on magnesium battery have been in active progress. However there are only a few host materials known for rechargeable magnesium battery because of several hurdles for investigating host materials such as slow ion diffusion, high polarization, and difficulty in structural characterization during the cycle. Herein, we have first investigated NASICON-type NaTi2(PO4)3 as a host material for rechargeable magnesium battery. The NaTi2(PO4)3 showed a high structural stability and a low polarization of about 0.1V between charge and discharge processes. The properties have not been reported so far among the host materials for magnesium battery. These results have been obtained through the experiments of cyclic voltammetry, galvanostatic cycle, x-ray diffraction, electron scanning microscopy, energy dispersive x-ray spectroscopy, and elemental mapping. Synthesized NaTi2(PO4)3 powder was identified by X-ray diffraction Rietveld refinement with GSAS program. The insertion/extraction of magnesium into/from NaTi2(PO4)3 was confirmed by structural changes observed in X-ray diffraction patterns. The existence of intercalated magnesium was confirmed by EDS and elemental mapping. Especially the magnesium insertion/extraction instead of sodium was evidenced by comparison of cyclic voltammetry between magnesium and sodium ion cell systems. The intercalation reaction is proved to be reversible from the fact that the structure of NaTi2(PO4)3 was returned to the pristine state after the electrochemical cycles. ⓒ 2015 DGIST -
dc.description.tableofcontents 1.Introduction 1 --
1.1 Merits and demerits of rechargeable magnesium batteries 1 --
1.2 Several host materials for rechargeable magnesium batteries 3 --
1.3 NASICON structure NaTi2(PO4)3 4 --
2. Experiments 6 --
2.1 Preparation of NaTi2(PO4)3 powder 6 --
2.2 Characterization of prepared sample 6 --
2.3 Preparation of beaker type cell 7 --
2.3.1. Cell operation mechanisms in the beaker type cell 8 --
2.4 Electrochemical characterization 10 --
3. Results and Discussion 11 --
3.1 Characterization of synthesized NaTi2(PO4)3 11 --
3.2 Electrochemical measurements 14 --
3.3 Structural changes during the first cell cycle process 18 --
3.4 Cyclability of NaTi2(PO4)3 24 --
4. Conclusions 27 --
References 29
-
dc.format.extent 33 -
dc.language eng -
dc.publisher DGIST -
dc.subject host mintercalation for magnesium battery -
dc.subject 재충전 식 마그네슘 배터리 -
dc.subject NASICON 구조 -
dc.subject NaTi2(PO4)3 -
dc.subject 낮은 polarization -
dc.subject 마그네슘 삽입 -
dc.subject 마그네슘 배터리용 활물질 -
dc.subject rechargeable magnesium battery -
dc.subject NASICON structure -
dc.subject NaTi2(PO(PO(PO4)3 -
dc.subject low polarization -
dc.subject magnesium intercalation -
dc.title NaTi2(PO4)3 as host material for rechargeable magnesium ion batteries -
dc.title.alternative 재충전 식 마그네슘 배터리를 위한 전극 활물질로서 NaTi NaTi2(PO (PO4)3에 대한 연구 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.1923055 -
dc.description.alternativeAbstract 재충전 식 마그네슘 배터리는 무독성, 저렴한 비용, 일가이온에 비해 두 배의 용량을 낼 수 있다는 점과 마그네슘 금속 표면에 dendrite를 형성하지 않음으로 인해 보장되는 안전성과 같은 다양한 장점으로 주목 받고 있다. 이러한 장점들을 실제 생활에 보편화하기 위해서, 마그네슘 배터리에 대한 연구가 활발히 진행되고 있다. 그러나 물질이 충/방전 하는 동안 생기는 느린 kinetic barrier와 high polarization 및 구조적인 붕괴로 인해 마그네슘 배터리에 대해 보고된 활물질들이 적은 상태이다. 이 논문에서 우리는 재충전 식 마그네슘 배터리용 활물질로서 NASICON-type NaTi2(PO4)3 를 연구했다. NaTi2(PO4)3는 구조적인 안정성과 충/방전 과정에서 낮은 polarization을 나타냈다. 이 결과는 cyclic voltammetry, galvatnostatic cycle, x-ray diffraction, electron scanning microscopy, energy dispersive x-ray spectroscopy와 원소 mapping을 통해 얻을 수 있었다. 합성된 NaTi2(PO4)3 물질은 XRD와 GSAS를 통한 Ridtveld refinemnet로 확인했다. 마그네슘 이온의 NaTi2(PO4)3 물질로의 탈/삽입은 XRD, EDS, 원소 mapping을 이용해 증명하였다. 특히 NaTi2(PO4)3 전극으로부터 마그네슘 이온의 추출은 각각 소듐 전해액, 마그네슘 전해액을 이용한 셀 시스템에서 CV 산화 전압차이를 통해 입증되었다. 수십 차례의 전기화학적인 cycle 후에도, NaTi2(PO4)3의 구조는 가역적으로 처음과 같은 상태로 돌아오는 것을 확인하였다. ⓒ 2015 DGIST -
dc.description.degree Master -
dc.contributor.department Energy Systems Engineering -
dc.contributor.coadvisor Kim, Jae Hyeon -
dc.date.awarded 2015. 2 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.date.accepted 2015-01-12 -
dc.contributor.alternativeDepartment 대학원 에너지시스템공학전공 -
dc.contributor.affiliatedAuthor Hyoung, Joo Eun -
dc.contributor.affiliatedAuthor Hong, Seung Tae -
dc.contributor.affiliatedAuthor Kim, Jae Hyeon -
dc.contributor.alternativeName 형주은 -
dc.contributor.alternativeName 홍승태 -
dc.contributor.alternativeName 김재현 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE