Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor Shanmugam, Sangaraju -
dc.contributor.author A. Vignesh -
dc.date.accessioned 2017-05-10T08:52:24Z -
dc.date.available 2016-02-12T00:00:00Z -
dc.date.issued 2016 -
dc.identifier.uri http://dgist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002220850 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/1444 -
dc.description.abstract Fluctuation in oil price and the effect of global warming forced us to look for the replacement of this fossil fuel by advanced high energy density metal air batteries. To bring this advanced technology to commercialize market we need to have noble metals (such as Pt/C) and metal oxides (such as RuO2 and MnO2) as catalysts in cathode to facile the oxygen reduction reaction while discharging process and oxygen evolution reaction when recharging the battery. However, the replacement of these noble metal-based catalysts is due to often suffer from multiple disadvantages, including high cost, low selectivity, poor stability and detrimental environmental effects.
We developed one dimensional LaCo1-xNixO3-δ perovskites by simple electrospinning approach. We show that the progressive replacement of Co by Ni in the LaCo0.97O3- δ perovskite structure greatly altered the OER electrocatalytic activity and the La(Co0.71Ni0.25)0.96O3-δ composition exhibited the lowest overpotential of 324 at 10 mAcm-2 in 0.1M KOH. Subsequently as prepared La(Co0.71Ni0.25)0.96O3-δ nanostructured was used as cathode catalyst for aqueous zinc-air battery, which delivers high capacity of 705 mAh.g-1zinc in primary zinc-air battery. The rechargeable battery discharges with low overpotential of 0.792 V and 0.696 V at low capacity mode (400 mAh.g-1 catalyst) and high capacity mode (2500 mAh.g-1catalyst), respectively, this value is much lower than LaCo0.97O3-δ nanotube catalyst and precious Pt/C catalyst.
In the second part of thesis, we synthesized a thin film carbon coated SiO2 nanosphere by hydrothermal method and we utilized this material as cathode catalyst for lithium-air battery, it delivers a capacity of 18588 mAh.g-1 of catalyst material at high current density of 150 mAh.g-1, which is nearly twice the capacity of nitrogen doped carbon material at same current density, and for rechargeable battery it last for ten cycles at a cutoff capacity of 1000 mAh.g-1. Later to elucidate the working mechanism behind this metalloid oxide catalyst, we also reported the post mortem analysis of cathode material of lithium-oxygen battery. ⓒ 2016 DGIST
-
dc.description.tableofcontents Chapter 1: Introduction 1--
1.1.Forward 1--
1.2.Status and complication of fuel cell technology 4--
1.3.PEM fuel cell 5--
1.4. Lithium-ion battery technology 7--
1.5.Metal-air battery 9--
1.6.Aqueous system 10--
1.6.1.Zinc-air battery 10--
1.6.2.Zinc metal anode 11--
1.6.3.Electrolyte 11--
1.6.4.Air cathode catalys 12--
1.7.Non-aqueous system 13--
1.7.1.Lithium-air battery 13--
Chapter 2: Air cathode catalyst for aqueous zinc-air battery 16--
2.1. Literature survey 16--
2.2 Scope of the work 19--
2.3. Experimental section 20--
2.3.1.Electrospinning approach 20--
2.3.2.Chemicals required 20--
2.3.3. Method 20--
2.3.4.Sol-gel approach 21--
2.3.5.Chemicals required 21--
2.3.6.Method 21--
2.4. Material characterization 23--
2.5. Electrochemical characterization 23--
2.5.1.Electrochemical setup 23--
2.5.2.Electrochemical active surface area 24--
2.6.Zinc-air battery setup 25--
2.7.Results and Discussion 27--
2.7.1.Structural characterization 27--
2.7.2.Electrochemical studies 40--
2.7.3.Zinc-air battery performance 51--
2.8.Summary 60--
Chapter 3: Nitrogen doped carbon coated SiO2 as air cathode catalyst for non-aqueous lithium-oxygen battery 61--
3.1.Literature survey 61--
3.2.Scope of the work 63--
3.3.Experimental section 63--
3.3.1.Hydrothermal approach 63--
3.3.2.Chemicals Required 64--
3.3.3.Synthesis procedure of SiO2 nanosphere 65--
3.3.4.Synthesis procedure of SiO2/NC nanosphere 65--
3.4.Material characterization 65--
3.5.Electrochemical characterization 66--
3.5.1.Electrochemical setup 66--
3.6.Lithium oxygen cell assembly and testing 67--
3.6.1.Air cathode preparation 67--
3.7.Results and discussion 69--
3.7.1.Structural analysis 69--
3.7.2.Electrochemical studies 73--
3.7.3.Lithium-oxygen battery performance 76--
3.8. Summary 83--
Conclusions 84--
Reference 86--
Acknowledgement 105
-
dc.format.extent 105 -
dc.language eng -
dc.publisher DGIST -
dc.subject Air cathode catalyst -
dc.subject LaCo1-xNixO3-δ perovskites -
dc.subject zinc-air battery -
dc.subject SiO2/NC -
dc.subject lithiumair battery -
dc.subject 공기극 촉매 -
dc.subject 페로브스카이트 -
dc.subject 아연-공기 전지 -
dc.subject 리튬-공기전지 -
dc.title Development of Air Cathode Materials for Metal- Air Batteries -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.2220850 -
dc.description.alternativeAbstract 불안정한 유가와 지구온난화는 화석연료를 대체할 수 있는 높은 에너지 밀도의 금속 공기 전지의 발전을 야기하였다. 이 진보된 기술을 상용화 하기 위해서는 충·방전 시 양극 및 음극에서 산소환원반응 및 산소발생반응을 일어나게 하기 위하여 귀금속(Pt/C) 및 금속 산화물(RuO2, MnO2) 촉매가 필요하다. 그러나 이러한 귀금속 기반의 촉매는 가격이 비싸며 낮은 선택성과 낮은 내구성, 홖경오염 이라는 문제점들을 지니고 있다.
우리는 간단한 전기방사법을 통해 일차원의 LaCo1-xNixO3-δ 페로브스카이트 촉매를 개발하였다. LaCo1-xNixO3-δ 페로브스카이트 구조 내에서 코발트를 니켈로 치환했을 때 OER 활성을 향상시킬 수 있으며, La(Co0.71Ni0.25)0.96O3-δ 구성 시 0.1M 의 KOH 에서 10mAcm-2 의 전류를 얻기 위해서는 324 mV 의 낮은 과전압이 요구됨을 확인하였다. 이를 전지에 홗용 시, La(Co0.71Ni0.25)0.96O3-δ 를 음극 촉매로 사용한 수용성 일차 아연-공기 전지에서는 높은 용량(705 mAh.g-1zinc)의 성능을 얻을 수 있었다. 재생 가능한 이차 아연-공기 전지로 제작 시, 전지 방전 과정에서 낮은 용량모드(400 mAh.g-1 catalyst) 에서는 0.792 V, 높은 용량모드(2500 mAh.g-1catalyst) 에서는 0.696 V 로 LaCo0.97O3-δ 나노 튜브 구조 기반촉매와 귀금속 촉매인 Pt/C 를 사용하였을 때 보다 훨씬 낮은 과전압을 필요로 함을 확인할 수 있었다.
학위논문의 두 번째 파트에서는 수열합성법을 통해 카본이 얇게 코팅된 SiO2 나노스피어(nanosphere)를 합성하였고, 리튬 공기 전지에 적용하여 150 mAh.g-1 의 높은 전류밀도에서 18588 mAh.g-1 의 용량을 지닌 음극 촉매로 사용하였다. 이는 같은 전류
밀도에서 질소가 도핑된 탄소보다 거의 2 배의 용량을 보였으며, 2 차 전지로 제조 시 1000mAh.g-1 의 차단용량에서 10 사이클이 지속되는 것을 확인하였다. 본 학위논문에서는 준금속 산화물 촉매의 작동 매커니즘을 설명하기 위해 리튬 공기 전지 음극 물질에 대한 분석 또한 함께 논의되었다. ⓒ 2016 DGIST
-
dc.description.degree Master -
dc.contributor.department Energy Systems Engineering -
dc.contributor.coadvisor Park, Yi Seul -
dc.date.awarded 2016. 2 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.date.accepted 2016-02-12 -
dc.contributor.alternativeDepartment 대학원 에너지시스템공학전공 -
dc.contributor.affiliatedAuthor A. Vignesh -
dc.contributor.affiliatedAuthor Shanmugam, Sangaraju -
dc.contributor.affiliatedAuthor Park, Yi Seul -
dc.contributor.alternativeName 아일란 -
dc.contributor.alternativeName 상가라쥬샨무감 -
dc.contributor.alternativeName 박이슬 -
Files in This Item:
000002220850.pdf

000002220850.pdf

기타 데이터 / 7.81 MB / Adobe PDF download
Appears in Collections:
Department of Energy Science and Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE