Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor In, Su Il -
dc.contributor.author Abdul Razzaq -
dc.date.accessioned 2017-05-10T08:53:44Z -
dc.date.available 2017-01-18T00:00:00Z -
dc.date.issued 2017 -
dc.identifier.uri http://dgist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002327042 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/1505 -
dc.description.abstract The enormous and continuous release of anthropogenic CO2 into earth’s atmosphere have excessively increased the atmospheric CO2 level, resulting in natural carbon cycle disturbance and stemming the critical issues of global warming, climate change and environmental pollution. Amongst greenhouse gasses (GHG), CO2 is a prominent gas responsible for proliferating the greenhouse effect. An effective approach to overcome such issue of elevated atmospheric CO2 level is to capture CO2 followed by its utilization in industrial processes and/or its conversion to useful chemicals/fuels. As revealed by thermodynamic studies, CO2 is a very stable molecule, demanding additional energy to overcome the uphill barrier for its conversion to useful chemicals. In this regard, several approaches have been developed to overcome the overpotential in its conversion to useful chemicals. Various techniques include chemical conversion, thermal conversion, biological conversion, electrocatalytic conversion, photoelectrochemical conversion and photocatalytic conversion. Amongst these approaches, photocatalytic CO2 conversion/CO2 photoreduction via solar light to useful hydrocarbons and chemicals seems to be an appealing and compelling strategy, well-fitting to the objectives of renewable energy utilization and, environment and energy infrastructure in a sustainable manner. Despite of extensive research and development, the respective field still remain in its infancy and demand enormous amount of efforts for improved photocatalytic performance and product selectivity. A plenty of photocatalytic materials have been developed for improved CO2 photoreduction, amongst which Titanium dioxide/Titania (TiO2) and/or TiO2 based photocatalysts are extensively studied within the scientific society. TiO2 offers several advantages such as corrosion stability, abundant availability and low cost, though its performance is largely limited due to inadequate light absorption, mainly attributed to its wide band gap (~3.2 eV) and low quantum yield in sunlight due to surface and bulk volume charge recombination. However, despite of such critical disadvantages, TiO2 still remains a champion material in the field of photocatalysis due to its stable and commendable properties. A number of approaches have been developed to overcome the issues of limited light absorption and efficient charge separation, including doping with non-metal or noble metal co-catalysts, coupling with low band gap semiconductors, and the synthesis of carbon-based TiO2 composites. Hence, with the aim of improving the photocatalytic performance of TiO2 and TiO2 based materials, the experimental works performed and investigated in this thesis consists of three key strategies leading to enhanced light absorption and improved charge separation for TiO2 and TiO2 based materials. Mainly three experimental works are done and investigated during Ph.D. research which include approaches such as (i) foreign element doped sodium titanate nanotubes (Na+-TNT), (ii) synthesis of reduced graphene oxide (rGO) coupled TiO2 nanotube arrays, a novel heterostructured photocatalyst and (iii) development of reduced TiO2 by a newly developed approach.
During past few years, TiO2 nanotubes (TNT), a one dimensional (1-D) TiO2 nanostructures have attracted a great interest among the photocatalysis research community, offering more active sites and improved charge separation by its high surface area and directional charge transport. In the first experimental approach of the thesis, an attempt was made to enhance the photocatalytic performance of sodium titanate nanotubes (Na+-TNT) by a co-doping strategy of foreign elements. Carbon and nitrogen co-doped sodium titanate nanotubes (C,N-TNT) are synthesized by designing a simple two-step process, comprising of an alkaline hydrothermal technique followed by calcining the well mixture of Na+-TNT (obtained from alkaline hydrothermal method) with varied amounts of urea (as a nitrogen and carbon dopant source). The photocatalysts are characterized using numerous experimental techniques, and investigated under simulated solar light spectrum for the photocatalytic conversion of CO2 and water vapor to methane (CH4). The C,N-TNT sample with optimum dopant concentration yields the maximum methane yield of 230.80 ppm•g-1•h-1, 2.63 times more than pure Na+-TNT. The key factors contributing to enhanced photocatalytic performance include increased light absorption, surface area and Na+ ions concentration in TNT which acts as a CO2 adsorption site and photogenerated electrons recombination centers. It is observed that higher doping of the TNT, resulted in lower photocatalytic performance which might be due to decreased surface area or increased recombination centers. Our results suggest, co-doping of nanostructured photocatalysts is an excellent pathway for improving textural and photocatalytic properties for the respective application domain.
Graphene based TiO2 nanostructures have also been found to offer improved photocatalytic/photoelectrochemical properties, with graphene contents enhancing light absorption as well as promoting rapid charge transfer. With the aim of improved photocatalytic performance via enhanced light absorption and efficient charge separation, an attempt is made in second experimental work of the thesis for the synthesis of novel heterostructure comprising of reduced graphene oxide (rGO) coupled with 1-D TiO2 nanotube (TNT) arrays. A facile synthesis approach is designed resulting in a noble metal-free novel nanostructured photocatalytic material, comprising of one-dimensional arrays of TNT covered with reduced graphene oxide and TiO2 nanoparticles termed as rGO-TNTNP. The probable mechanism which might be involved in the fabrication of such novel nanostructured photocatalyst is proposed on the basis of reported literature and experimental results specifically, Raman spectra, XPS data and SEM images. The novel nanostructure exhibits significantly improved photocurrent density and photochemical activity via photocatalytic conversion of CO2 into CH4 under simulated solar light irradiation. The rGO-TNTNP produces CH4 with an evolution rate of 5.67 ppm•cm2•h-1, 4.4 times more than pure TNT sample (1.28 ppm•cm2•h-1). The improved performance appears due to the combined effect of enhanced light absorption and effective charge separation promoted by the rGO content over photocatalyst surface.
The discovery of black or reduced TiO2 materials with extended light absorption and suitable band structure has offered improved photocatalytic properties. Until now a variety of methods have been reported for the synthesis of reduced TiO2 (RT), suggesting different material properties which can be manipulated by a number of process parameters. In the third and last experimental work of the thesis, the performance of RT for CO2 photoreduction with water vapor to hydrocarbons mainly CH4, is investigated under simulated solar light irradiation. The RT employed in this work is synthesized by a newly developed reduction process using dual reducing agents i.e. Mg in 5% H2/Ar. Further, to improve the charge separation efficiency, platinum (Pt) nanoparticles as co-catalyst are loaded by a photodeposition method and Pt concentration is optimized on the RT surface. With optimally photodeposited Pt nanoparticles on RT, it exhibits a stable performance and a threefold increase in CH4 production rate (1640.58 ppm•g-1•h-1 or 1.13 µmol•g-1•h-1) as compared to Pt photodeposited pure commercial nano-TiO2 (546.98 ppm•g-1•h-1, 0.38 µmol•g-1•h-1). The improved photocatalytic performance is mainly attributed to the suitable band gap with enhanced light absorption, well-aligned position of band edges against CO2/CH4 redox potential and efficient photogenerated charge separation by well-dispersed Pt nanoparticles co-catalyst having optimum size, concentration and well dispersion. ⓒ 2017 DGIST
-
dc.description.tableofcontents Chapter 1. Introduction 1--
1.1 Impact of industrialization on environment 1--
1.2 Carbon dioxide (CO2): A potential greenhouse gas 3--
1.2.1 Climate change 4--
1.2.2 Increase in earths average temperature 4--
1.2.3 Rise in sea level 5--
1.2.4 Spreading of diseases 5--
1.2.5 Disturbing ecosystems 5--
1.2.6 Crops cultivation 6--
1.3 The “Carbon Cycle” disturbance 7--
1.4 Normalizing excess atmospheric CO2 level 9--
1.4.1 CO2 capture and separation 9--
1.4.2 CO2 utilization and conversion 10--
1.5 Photocatalytic CO2 conversion/reduction 14--
1.5.1 Introduction 14--
1.5.2 Thermodynamics 16--
1.5.3 Mechanism and reactions pathways 19--
1.6 Photocatalytic materials trend 23--
1.6.1 Single semiconductor photocatalysts 24--
1.6.2 Doped semiconductor photocatalysts 25--
1.6.3 Nanostructured semiconductor photocatalysts 27--
1.6.4 Graphene based photocatalysts 28--
1.6.5 Metal loaded photocatalysts 30--
1.6.6 Semiconductor-semiconductor junction photocatalysts 32--
1.7 Research objectives and approaches 35--
1.8 References 39--
Chapter 2. Characterization and analysis tools 48--
2.1 Characterization tools 48--
2.1.1 X-ray diffraction (XRD) 48--
2.1.2 Raman spectroscopy 52--
2.1.3 Scanning electron microscopy (SEM) 55--
2.1.4 Transmission electron microscopy (TEM) 57--
2.1.5 X-ray photoelectron spectroscopy (XPS) 59--
2.1.6 UV-vis diffuse reflectance spectroscopy (UV-vis DRS) 62--
2.1.7 Photoluminescence (PL) spectroscopy 64--
2.1.8 Physisorption analysis 66--
2.2 Analysis techniques 71--
2.2.1 Gas Chromatographic (GC) analysis 71--
2.2.2 Gas Chromatography-Mass spectroscopy (GC-MS) analysis 79--
2.2.3 Photocurrent measurements 89--
2.3 Experimental setup for photocatalytic CO2 conversion 92--
2.3.1 Experimental assembly 92--
2.3.2 Experiment preparation 93--
2.3.3 Experiment operation 94--
2.3.4 Control test and carbon source investigation 95--
2.4 References 97--
Chapter 3. Photocatalytic Conversion of CO2 to Hydrocarbon fuel using Carbon and Nitrogen co-doped Sodium Titanate Nanotubes 99--
3.1 Introduction 99--
3.2 Experimental section 105--
3.2.1 Materials and reagents 105--
3.2.2 Preparation of carbon and nitrogen co-doped sodium titanate nanotubes (C,N-TNT) 105--
3.2.3 Characterization 106--
3.2.4 Photocatalytic CO2 conversion 107--
3.3 Results and discussion 109--
3.3.1 Crystallographic study 109--
3.3.2 Morphological analysis 111--
3.3.3 Light absorption and band gap estimation 113--
3.3.4 N2-physisorption analysis 114--
3.3.5 X-ray photoelectron spectroscopy (XPS) analysis 117--
3.3.6 Photocatalytic CO2 conversion 120--
3.4 Conclusions 124--
3.5 References 125--
Chapter 4. TiO2 Nanotube Arrays Covered with Reduced Graphene: A Facile Fabrication approach towards a Noble Metal-free photocatalyst and its application in Photocatalytic CO2 conversion to methane 132--
4.1 Introduction 132--
4.2 Experimental section 135--
4.2.1 Materials and reagents 135--
4.2.2 Synthesis of graphene oxide (GO) 135--
4.2.3 Synthesis of rGO-TNTNP 136--
4.2.4 Characterization 137--
4.2.5 Photocurrent measurements 138--
4.2.6 Photocatalytic CO2 conversion 139--
4.3 Results and discussion 140--
4.3.1 Morphological analysis 140--
4.3.2 Crystallographic study 142--
4.3.3 X-ray photoelectron spectroscopy (XPS) analysis 144--
4.3.4 rGO-TNTNP formation mechanism 148--
4.3.5 Optical properties and photocurrent measurements 151--
4.3.6 Photocatalytic CO2 conversion 153--
4.4 Conclusions 156--
4.5 References 157--
Chapter 5. Reduced TiO2 (TiO2-x) Photocatalysts prepared by a New Approach for Efficient Solar Light CO2 conversion to Hydrocarbon fuels 163--
5.1 Introduction 163--
5.2 Experimental section 169--
5.2.1 Materials and reagents 169--
5.2.2 Synthesis of reduced TiO2 (RT) 169--
5.2.3 Synthesis of Pt deposited reduced TiO2 (RT) 170--
5.2.4 Characterization 170--
5.2.5 Band gap estimation 172--
5.2.6 Photocatalytic CO2 conversion 172--
5.2.7 13CO2 isotopic experiment 174--
5.3 Results and discussion 175--
5.3.1 Crystallographic study 175--
5.3.2 Light absorbance and photoluminescence (PL) spectroscopy 178--
5.3.3 X-ray photoelectron spectroscopy (XPS) analysis 180--
5.3.4 Electron paramagnetic resonance (EPR) analysis 184--
5.3.5 N2-physisorption analysis 185--
5.3.6 Band gap estimation 186--
5.3.7 Photocatalytic CO2 conversion 188--
5.3.8 CO2 conversion mechanism 198--
5.4 Conclusions 199--
5.5 References 201--
Chapter 6. Concluding remarks 208--
Appendix 1. Abstract in Korean language 212--
Acknowledgements 217
-
dc.format.extent 217 -
dc.language eng -
dc.publisher DGIST -
dc.subject Solar light activated photocatalysts -
dc.subject Photocatalytic CO2 conversion -
dc.subject TiO2 nanotubes -
dc.subject Co-doping strategy -
dc.subject Reduced Graphene Oxide -
dc.subject Reduced TiO2 -
dc.subject 광촉매적 CO2 전환 -
dc.subject 태양광 활성 광촉매 -
dc.subject TiO2 나노튜브 -
dc.subject 동반도핑 -
dc.subject 환원된 산화 그래핀 -
dc.subject 환원된 TiO2 -
dc.title Solar Light Activated Photocatalysts for Enhanced CO2 Conversion to Hydrocarbon Fuels -
dc.type Thesis -
dc.identifier.doi 10.22677/THESIS.2327042 -
dc.description.alternativeAbstract 인위적으로 발생하는 CO2가 방대하고 끊임없이 방출되면서 대기 중의 CO2의 규모가 과도하게 증가하고 있다. 따라서 지구 온난화, 기후 변화, 환경오염이 진행되고 자연적인 탄소 순환이 방해받고 있다. CO2는 온실가스 중 온난화 효과에 가장 큰 기여도가 높은 물질로 알려져 있다. 따라서 대기 중의 CO2의 농도가 상승되는 것을 막기 위해서는 산업 공정에서 활용을 위해 CO2를 포집하거나, 다른 화합물이나 사용 가능한 연료로 전환하는 방법이 있다. 열역학적 연구에서 알 수 있듯이, CO2는 안정한 분자로, 사용 가능한 화합물로 전환되기 위해서는 큰 장벽을 넘을 수 있는 추가적인 에너지를 필요로 한다. 이 에너지를 넘기 위한 다양한 기술들에는 화학적 변환, 열적 변환, 생물학적인 변환, 전기학적인 변환, 광전기화학적인 변화, 광촉매적인 변환이 있다. 이러한 방법 중에서 빛을 이용하여 CO2를 탄화수소 화합물로 전환하는 광촉매적 전환이 가장 매력적인 방법이다. 왜냐하면, 지속가능한 측면에서 볼 때, 재생에너지와 환경과 에너지 인프라구축 하는 목적에 가장 잘 부합하는 방법이기 때문이다. 광범위한 연구와 개발에도 불구하고, 각 분야는 아직 초창기 단계에 있으며, 효율적인 촉매반응과 생성물 선택적 반응 부분에서 아직은 많은 노력이 요구되고 있다. CO2 광화학적 환원반응 촉매제에는 다양한 물질들이 개발되고 있고 그 중에서 TiO2가 가장 널리 알려져 있다. TiO2는 부식에 대한 안정성이 높으며, 풍부하고 값싼 가격 등의 이점이 있지만 넓은 밴드 갭(~3.2 eV)로 인해 빛 흡수가 적고, 표면과 큰 부피에서의 전하 재결합으로 햇빛에서 낮은 양자 수득률을 나타내어 사용하기에는 한계가 있다. 그러나 이러한 결함이 있음에도 불구하고, TiO2는 뛰어난 안정성으로 광촉매 분야에서 으뜸으로 여겨지고 있다. 따라서 제한적인 빛 흡수와 효과적인 전하분리를 극복하기 위해서, 비금속이나 백금과 같이 귀금속을 조촉매로 도핑하거나 낮은 밴드 갭을 갖고 있는 반도체를 연결하거나 탄소를 기본으로 한 TiO2 를 합성하는 등의 다양한 방법을 연구를 진행하고 있다. 그러므로 본 논문에서 연구한 내용은 TiO2 물질과 이를 기본으로 한 물질의 광촉매적인 활동을 증가하기 위한 것 으로 빛 흡수를 증가하고 전하 분리를 향상 하는 것을 포함하고 있다. 따라서, Ph. D 과정 동안에 진행된 실험은 총 세 가지이다. 먼저, TiO2 나노 튜브에 다른 원소를 도핑시키고, 두 번째로는 환원된 그래핀 산화물(rGO)을 새로운 헤테로 구조로 된 TiO2 나노 튜브와 합성하고, 마지막으로 새로운 접근을 통해 환원된 TiO2 개발에 대한 연구를 진행하였지난 몇 년 동안에, 1차원적인 TiO2 나노튜브는 많은 활성부위를 갖고 있으며, 넓은 표면적과 방향성이 있는 전자 이동에 의하여 전하 분리가 잘 이뤄진다는 점에서 광촉매 연구 분야에서 큰 관심을 얻었다. 논문의 첫 번째 실험적인 접근은, 다른 원소를 조요소로 도핑하여 티탄산나트륨 나노튜브의 촉매 작용을 증가하도록 하였다. 탄소와 질소가 도핑 되어있는 티탄산나트륨 나노튜브는 다양한 양의 요소 (질소와 탄소의 근원)와 잘 섞여 있는 나트륨 이온의 결합된 티탄산나트륨 나노튜브 (알카라인 열처리방법을 통해 얻어짐)를 열처리하는 방법으로 합성된다. 광촉매는 많은 실험 기술에 따라서 그 특성이 정해진다. 그 중에 인공 태양 빛을 사용하여 CO2와 수증기를 촉매제를 통해 반응시켜 메탄으로 전환하는 실험 진행하였다. 탄소와 질소가 최적의 농도로 도핑된 티탄산나트륨의 경우 메탄 230.80 ppm∙g-1∙h-1 최대로 생산하였고, 이는 도핑 되지 않은 티탄산나트륨을 사용했을 때보다 메탄 생산량이 2.63배에 증가하였다. 광촉매 활성을 증가하는데 필요한 요소는 빛 흡수, 표면적, CO2 흡착 위치이며 광전자들의 재결합 중심인 TiO2 나노튜브 물질의 나트륨 이온의 농도이다. 도핑 비율이 높은 TiO2 나노튜브는 특정 표면적이 줄어들거나, 재결할 부분이 증가하여 낮은 광촉매 활성이 나타낸다. 따라서 조요소로 도핑된 나노구조의 광촉매는 조직적이나 광촉매의 특성을 향상 시키는 특성이 있어 각각 분야에 적용할 수 있는 좋은 방법이라 생각한다. 그래핀을 기본으로 한 TiO2 나노구조는 그래핀의 특성인 빠른 전하전달뿐만 아니라 향상된 빛 흡수로 인해 높은 광전기화학적 특성 갖고 있다고 알려져 있다. 향상된 광흡수와 효과적인 전하분리를 통한 개선된 광촉매 효과를 위해 그래핀 산화물(rGO)와 1차원 TiO2 나노튜브를 사용한 새로운 헤테로 구조 합성을 두 번째 실험으로 진행하였다. 환원된 산화그래핀-TiO2 나노입자들로 뒤덮인 티탄산염 나노튜브의 1차원적 배열로 이루어져 있고 귀금속을 포함하지 않는 새로운 나노구조 광촉매물질의 손쉬운 합성법이 만들어졌다. 새로운 나노구조의 광촉매 제조와 관련된 가능성 있는 메커니즘은 보고된 문헌과 라만 스펙트럼, XPS 결과, SEM 사진의 실험결과를 바탕으로 다루고 있다. 새로운 나노구조는 상당히 향상된 광전류 밀도와 인공 태양 아래에서 CO2를 메탄으로 전환하는 광화학적인 활동을 보여준다. rGO-TNTNP는 5.67 ppm∙cm-2∙h-1생산하며, 순수한 TiO2 나노튜브에 비해 4.4배 증가한 양에 해당한다. 이러한 향상된 결과는 빛 흡수 증가와 rGO의 특성으로 인해서 효과적인 전자 분리를 통해 얻었다는 것을 알 수 있다.
넓은 빛 흡수와 적절한 밴드 구조를 가진 black TiO2 또는 환원된 TiO2는 높은 광촉매 특성을 갖고 있다. 현재까지 환원된 TiO2 (RT)의 합성법은 다양한 방법으로 알려져 있으며, 많은 공정 변수에 의해서 물질의 특성들이 달라진다. 세 번째이자 마지막 실험에서는 인공 태양광을 이용하여 CO2과 수증기를 환원된 TiO2와 반응시켜 탄화수소, 특히, 메탄이 발생하는지를 확인 하였다. 이 실험에서 사용한 환원된 TiO2는 5% H2/Ar에 Mg 같은 이중의 환원제를 사용하는 새로운 방법으로 합성하였다. 또한, 전자 분리 효율을 증가하기 위해서, 백금 나노입자를 조촉매로써 사용했고 최적화된 농도를 환원된 TiO2 위에 광증착 방법으로 처리하였다. 환원된 TiO2 표면에 최적화된 백금 나노입자를 빛을 통해 적층시켰을 때, 메탄의 생산량 (1640.58 ppm∙g-1∙h-1, 1.13 µmol∙g-1∙h-1)이 상용화된 나노크기의 TiO2를 사용 (546.98 ppm∙g-1∙h-1, 0.38 µmol∙g-1∙h-1) 했을 때 보다 세 배 증가한 것을 알 수 있다. 향상된 광촉매 효과는 빛 흡수를 향상시킨 적절한 밴드갭, CO2/CH4 산화환원 전위에 대한 띠 끝의 잘 정렬된 위치와 최적의 크기와 농도로 잘 분산되어 있는 Pt 나 노입자 조촉매를 통한 효과적인 광전하 분리가 기인한다고 볼 수 있다. ⓒ 2017 DGIST
-
dc.description.degree Doctor -
dc.contributor.department Energy Systems Engineering -
dc.contributor.coadvisor Lee, Soo Keun -
dc.date.awarded 2017. 2 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.date.accepted 2017-01-18 -
dc.contributor.alternativeDepartment 대학원 에너지시스템공학전공 -
dc.contributor.affiliatedAuthor Abdul Razzaq -
dc.contributor.affiliatedAuthor In, Su Il -
dc.contributor.affiliatedAuthor Lee, Soo Keun -
dc.contributor.alternativeName 압둘 라자크 -
dc.contributor.alternativeName 인수일 -
dc.contributor.alternativeName 이수근 -
Files in This Item:
000002327042.pdf

000002327042.pdf

기타 데이터 / 6.01 MB / Adobe PDF download
Appears in Collections:
Department of Energy Science and Engineering Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE