Cited time in webofscience Cited time in scopus

Enhancement of the ionic conductivity of a composite polymer electrolyte via surface functionalization of SSZ-13 zeolite for all-solid-state Li-metal batteries

Title
Enhancement of the ionic conductivity of a composite polymer electrolyte via surface functionalization of SSZ-13 zeolite for all-solid-state Li-metal batteries
Author(s)
Jamal, HasanKhan, FirozHyun, SuyeonMin, Sang-WonKim, Jae Hyun
DGIST Authors
Jamal, HasanKhan, FirozHyun, SuyeonMin, Sang-WonKim, Jae Hyun
Issued Date
2021-02
Type
Article
ISSN
2050-7488
Abstract
To mitigate the safety issues of liquid electrolyte-based Li-ion batteries, there is a growing interest in the development of solid-state electrolyte (SSE) based Li-metal batteries. Regrettably, most SSEs have low ionic conductivity (sigma), which significantly lowers the performance of the Li-metal batteries. However, a composite polymer electrolyte (CPE) offers a higher sigma value, which still needs to be improved for a reliable Li-metal battery. Here, a superior CPE (MZ-CPE) was synthesized using modified SSZ-13 (M-SSZ-13) as a ceramic filler. Polyethylene oxide (PEO) and lithium bis-(trifluoromethanesulfonyl)imide (LiTFSI) were used as the substrate and Li-salt, respectively. Due to the upgraded and hydrophobic surface of M-SSZ-13, the dispersion of the Li-salt in PEO is significantly improved. Thus, the value of sigma was greatly enhanced, which helps to make better interfacial contact with the electrodes. The MZ-CPE electrolyte with 5 wt% M-SSZ-13 (5% MZ-CPE) provided an outstanding sigma value of 5.34 x 10(-2) S cm(-1) (@ 70 degrees C) along with a Li-ion transference number of 0.85. Besides, the obtained discharge specific capacities were 154 and 194 mA h g(-1) using LiFePO4 and LiNiCoAlO2 cathodes, respectively at the discharge current density of 0.1C. For LiFePO4 cathode, the capacity retention was 94.1% after 80 cycles @ 60 degrees C. These results indicate that hydrophobic zeolite containing composite polymer electrolytes could be a potential alternative for solid-state Li-metal batteries.
URI
http://hdl.handle.net/20.500.11750/15319
DOI
10.1039/d0ta11218f
Publisher
Royal Society of Chemistry
Related Researcher
  • 김재현 Kim, Jae Hyun
  • Research Interests 에너지; 배터리; 고체전해질; 태양전지; 전기차; 리튬이온배터리
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Energy & Environmental Technology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE