Detail View

Ti2Zr2O8 nanotube as an additive in the fuel cell membrane and catalyst layer for improved low humidity operation
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Tsipoaka, Maxwell -
dc.contributor.author Aziz, Md. Abdul -
dc.contributor.author Park, Juahn -
dc.contributor.author Shanmugam, Sangaraju -
dc.date.accessioned 2021-09-27T09:30:02Z -
dc.date.available 2021-09-27T09:30:02Z -
dc.date.created 2021-08-26 -
dc.date.issued 2021-10 -
dc.identifier.issn 0378-7753 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15323 -
dc.description.abstract The development of high-performance, low-cost and durable membrane electrode assembly (MEA) materials receives significant attention from the fuel cell community. A promising MEA design approach introduces a radical scavenging Ti2Zr2O8 nanotubes additive (TZONT) in the polymer electrolyte membrane and cathode catalyst layer for fuel cells operating under dry conditions is described. The modified MEA operating at 20% relative humidity (RH) showed ~18% increase in the peak power density than its counterpart assembled with only a modified membrane. A fluoride emission rate (FER) analysis reveals that the TZONT additive in the Nafion ionomer protects it from radical attack and, thus, lowers the FER value to about 200-times the commercial Nafion-212 membrane. Finally, we revealed a promising approach to lower the Pt loading in the cathode catalytic layer without compromising its intrinsic activity in a relatively cost-competitive manner. © 2021 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier BV -
dc.title Ti2Zr2O8 nanotube as an additive in the fuel cell membrane and catalyst layer for improved low humidity operation -
dc.type Article -
dc.identifier.doi 10.1016/j.jpowsour.2021.230386 -
dc.identifier.wosid 000691537100002 -
dc.identifier.scopusid 2-s2.0-85113172683 -
dc.identifier.bibliographicCitation Tsipoaka, Maxwell. (2021-10). Ti2Zr2O8 nanotube as an additive in the fuel cell membrane and catalyst layer for improved low humidity operation. Journal of Power Sources, 509, 230386. doi: 10.1016/j.jpowsour.2021.230386 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Fluoride emission rate -
dc.subject.keywordAuthor MEA -
dc.subject.keywordAuthor Membrane -
dc.subject.keywordAuthor Radical scavenger -
dc.subject.keywordAuthor Ti2Zr2O8 -
dc.subject.keywordPlus COMPOSITE MEMBRANES -
dc.subject.keywordPlus ELEVATED-TEMPERATUR -
dc.subject.keywordPlus EELECTROLYTE MEMBRANES -
dc.subject.keywordPlus WATER MANAGEMENT -
dc.subject.keywordPlus POWER-DENSITY -
dc.subject.keywordPlus NAFION MATRIX -
dc.subject.keywordPlus DURABILITY -
dc.subject.keywordPlus ELECTROCATALYST -
dc.subject.keywordPlus CONDUCTIVITY -
dc.subject.keywordPlus CONFINEMENT -
dc.citation.startPage 230386 -
dc.citation.title Journal of Power Sources -
dc.citation.volume 509 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Electrochemistry; Energy & Fuels; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

상가라쥬샨무감
Shanmugam, Sangaraju상가라쥬샨무감

Department of Energy Science and Engineering

read more

Total Views & Downloads