Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Kangmin -
dc.contributor.author Shin, Sangwon -
dc.contributor.author Lee, Wonhee -
dc.contributor.author Choi, Deokjae -
dc.contributor.author Ahn, Yongdeok -
dc.contributor.author Park, Minsoo -
dc.contributor.author Seo, Daeha -
dc.contributor.author Seo, Kwanyong -
dc.date.accessioned 2021-09-28T06:30:02Z -
dc.date.available 2021-09-28T06:30:02Z -
dc.date.created 2021-08-26 -
dc.date.issued 2021-08 -
dc.identifier.issn 1530-6984 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15342 -
dc.description.abstract Solar-driven reactive oxygen species (ROS) generation is an attractive disinfection technique for cell death and water purification. However, most photocatalysts require high stability in the water environment and the production of ROS with a sufficient amount and diffusion length to damage pathogens. Here, a ROS generation system was developed consisting of tapered crystalline silicon microwires coated with anatase titanium dioxide for a conformal junction. The system effectively absorbed >95% of sunlight over 300-1100 nm, resulting in effective ROS generation. The system was designed to produce various ROS species, but a logistic regression analysis with cellular survival data revealed that the diffusion length of the ROS is ∼9 μm, implying that the most dominant species causing cell damage is H2O2. Surprisingly, a quantitative analysis showed that only 15 min of light irradiation on the system would catalyze a local bactericidal effect comparable to the conventional germicidal level of H2O2 (∼3 mM). © 2021 American Chemical Society. All rights reserved. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Sunlight-Activatable ROS Generator for Cell Death Using TiO2/ c-Si Microwires -
dc.type Article -
dc.identifier.doi 10.1021/acs.nanolett.1c02337 -
dc.identifier.wosid 000691792400036 -
dc.identifier.scopusid 2-s2.0-85113188280 -
dc.identifier.bibliographicCitation Nano Letters, v.21, no.16, pp.6998 - 7004 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Cell death -
dc.subject.keywordAuthor Photocatalytic disinfection -
dc.subject.keywordAuthor Reactive oxygen species -
dc.subject.keywordAuthor TiO2/ c-Si microwires -
dc.subject.keywordPlus Cell death -
dc.subject.keywordPlus Hydrogen peroxide -
dc.subject.keywordPlus Irradiation -
dc.subject.keywordPlus Logistic regression -
dc.subject.keywordPlus Oxide minerals -
dc.subject.keywordPlus Anatase titanium dioxide -
dc.subject.keywordPlus Bactericidal effects -
dc.subject.keywordPlus Crystalline silicons -
dc.subject.keywordPlus Diffusion length -
dc.subject.keywordPlus Dominant species -
dc.subject.keywordPlus Light irradiations -
dc.subject.keywordPlus Water environments -
dc.subject.keywordPlus Water purification -
dc.subject.keywordPlus Titanium dioxide -
dc.citation.endPage 7004 -
dc.citation.number 16 -
dc.citation.startPage 6998 -
dc.citation.title Nano Letters -
dc.citation.volume 21 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry SMALL LAB(Single Molecule Approaches to ceLL Lab) 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE