Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Abbas, Hafiz Ghulam -
dc.contributor.author Rehman, Majeed Ur -
dc.date.accessioned 2021-10-15T07:00:03Z -
dc.date.available 2021-10-15T07:00:03Z -
dc.date.created 2021-06-14 -
dc.date.issued 2021-10 -
dc.identifier.issn 0169-4332 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15510 -
dc.description.abstract Based on the first-principle framework and particle swarm optimization approach, we have predicted two allotropes of arsenic carbide (AsC) monolayers consisting of an equimolar mixture of arsenic and carbon atoms with honeycomb structures, namely as puckered and buckled. Besides excellent stability, they present rich properties that could establish an efficient platform for hole-conductions, optical, and photocatalysis applications. The lower cohesive energy, absence of negative frequencies in the phonon dispersion curve, and ab initio molecular dynamics simulation prove both monolayers are thermodynamically, kinetically, and thermally stable at room temperature. Besides, electronic band structure calculations indicate that puckered and buckled configurations of AsC monolayers possess intrinsic band gaps of 1.27 and 1.78 eV. In particular, the absorption coefficient and bandgap of a puckered configuration are significantly tuned under the uniaxial strain and induces a transition from direct to the indirect gap. The appropriate band edge positions and strong absorption coefficient in the broad visible and ultraviolet light region make both monolayers a promising candidate for photocatalytic water-splitting and next-generation optoelectronic devices. The carrier mobility calculation exhibits both monolayers have the largest hole carrier mobility at room temperature, rendering it for a p-type field-effect transistor. © 2021 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier BV -
dc.title Arsenic carbide allotropes prediction: An efficient platform for hole-conductions, optical and photocatalysis applications -
dc.type Article -
dc.identifier.doi 10.1016/j.apsusc.2021.150109 -
dc.identifier.wosid 000663743700003 -
dc.identifier.scopusid 2-s2.0-85107136881 -
dc.identifier.bibliographicCitation Applied Surface Science, v.562, pp.150109 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Carrier mobility -
dc.subject.keywordAuthor Density functional theory -
dc.subject.keywordAuthor Field-effect transistor -
dc.subject.keywordAuthor Optical absorption -
dc.subject.keywordAuthor Particle swarm optimization -
dc.subject.keywordAuthor Photocatalysis -
dc.subject.keywordPlus GAS-SHIFT REACTION -
dc.subject.keywordPlus TRANSPORT-PROPERTIES -
dc.subject.keywordPlus MOLECULAR-DYNAMICS -
dc.subject.keywordPlus CARRIER MOBILITY -
dc.subject.keywordPlus PHOSPHORUS -
dc.subject.keywordPlus MONOLAYER -
dc.subject.keywordPlus SUPERCONDUCTIVITY -
dc.subject.keywordPlus MOLYBDENUM -
dc.subject.keywordPlus CARBON -
dc.subject.keywordPlus PHASE -
dc.citation.startPage 150109 -
dc.citation.title Applied Surface Science -
dc.citation.volume 562 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
ETC 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE