Detail View

Fe2O3 nanorods on carbon nanofibers induce spontaneous reductive transformation of inorganic contaminants in ambient aerated water
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kim, Chuhyung -
dc.contributor.author Lim, Jonghun -
dc.contributor.author Kim, Soonhyun -
dc.contributor.author Park, Yiseul -
dc.contributor.author Choi, Wonyong -
dc.date.accessioned 2021-10-17T13:00:09Z -
dc.date.available 2021-10-17T13:00:09Z -
dc.date.created 2021-09-30 -
dc.date.issued 2022-02 -
dc.identifier.issn 1385-8947 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15568 -
dc.description.abstract This work reports an unconventional example that Fe2O3 nanorods loaded on carbon nanofiber sheet (Fe2O3/CNF) enable the spontaneous reductive transformation of recalcitrant inorganic contaminants (e.g., CrO42-, Fe(CN)63-, IO3-, HSO5-, ClO3-, BrO3-, Ag+, and Pt4+) in ambient aerated solutions without using any external energy and chemicals. Fe2O3/CNF exhibited notable reductive activities for a variety of inorganic ions and transition metal ions (13 inorganic substances) which could be spontaneously reduced whereas Fe2O3 or CNF alone did not induce any conversion. The quantitative conversions to reduced products on Fe2O3/CNF were demonstrated for the cases of Fe(CN)63-, IO3-, ClO3-, and BrO3-. The reductive transformation was further confirmed by measuring the cathodic current generation on Fe2O3/CNF electrode upon spiking the target inorganic species. The spontaneous reductive processes were little hindered by the presence of dissolved O2, which makes the application practically viable as it does not require an energy-consuming deaeration process. The surface characterizations suggest that the spontaneous electron transfer is initiated upon introducing reducible inorganic substrates which electrons are transferred from the oxygen-containing functional groups on CNF to the inorganic substrates through Fe2O3 nanorods. The Fe2O3/CNF nanocomposite that reductively removes various inorganic substrates is proposed as a novel reactive nanomaterial that can control low-level contaminants. © 2021 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier B.V. -
dc.title Fe2O3 nanorods on carbon nanofibers induce spontaneous reductive transformation of inorganic contaminants in ambient aerated water -
dc.type Article -
dc.identifier.doi 10.1016/j.cej.2021.132108 -
dc.identifier.wosid 000728388600002 -
dc.identifier.scopusid 2-s2.0-85115036611 -
dc.identifier.bibliographicCitation Kim, Chuhyung. (2022-02). Fe2O3 nanorods on carbon nanofibers induce spontaneous reductive transformation of inorganic contaminants in ambient aerated water. Chemical Engineering Journal, 429. doi: 10.1016/j.cej.2021.132108 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Carbon nanofiber -
dc.subject.keywordAuthor Environmental nanomaterials -
dc.subject.keywordAuthor Interfacial electron transfer -
dc.subject.keywordAuthor Iron oxide nanorods -
dc.subject.keywordAuthor Spontaneous reductive transformation -
dc.subject.keywordPlus Carbon nanofibers -
dc.subject.keywordPlus Electron transitions -
dc.subject.keywordPlus Metal ions -
dc.subject.keywordPlus Nanorods -
dc.subject.keywordPlus Transition metal compounds -
dc.subject.keywordPlus Ambients -
dc.subject.keywordPlus Carbon nanofibres -
dc.subject.keywordPlus Environmental nanomaterial -
dc.subject.keywordPlus Inorganic contaminants -
dc.subject.keywordPlus Inorganic substrates -
dc.subject.keywordPlus Inorganics -
dc.subject.keywordPlus Interfacial electron transfer -
dc.subject.keywordPlus Iron oxide nanorod -
dc.subject.keywordPlus Reductive transformations -
dc.subject.keywordPlus Spontaneous reductive transformation -
dc.subject.keywordPlus Transition metals -
dc.citation.title Chemical Engineering Journal -
dc.citation.volume 429 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Engineering -
dc.relation.journalWebOfScienceCategory Engineering, Environmental; Engineering, Chemical -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김순현
Kim, Soonhyun김순현

Division of Energy & Environmental Technology

read more

Total Views & Downloads