Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Jamal, Hasan -
dc.contributor.author Khan, Firoz -
dc.contributor.author Si, Hyeong-Rok -
dc.contributor.author Kim, Jae Hyun -
dc.date.accessioned 2021-12-02T05:30:02Z -
dc.date.available 2021-12-02T05:30:02Z -
dc.date.created 2021-12-02 -
dc.date.issued 2021-12 -
dc.identifier.issn 2050-7488 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15884 -
dc.description.abstract To meet the rapidly growing demand for high-energy storage, it will be crucial to develop high power all-solid-state Li-metal batteries (SS-LMBs). In SSLMBs, the solid-state electrolyte enables high performance and long-term cycling stability. To investigate, we employed a YNa zeolite as a ceramic filler and a large fraction of Li-salt to synthesize a solid composite polymer electrolyte (YNa-CPE) with an enhanced work function. This enabled the creation of a stable interfacial layer between the YNa-CPE and Li-metal and prevented the growth of Li-dendrites. The galvanostatic lithium plating and stripping analysis of a symmetric [Li|YNa-CPE|Li] cell was initially conducted at different current densities for more than 1500 h, revealing uniform overpotential, which confirmed no significant growth of lithium dendrites even after the application of high current density. The Li-ion transference number greatly improved to 0.84. An excellent ionic conductivity of 1.66 × 10−2 S cm−1 was achieved at 60 °C. A capacity of 156.63 mA h g−1 was obtained (for the LFP cathode) at a Li-salt concentration of 35%, with a capacity retention rate of >95% over 100 cycles. By improving compatibility with the cathode, stability can be further improved. This investigation presents a facile tactic to fabricate superior performance and long-term stable SS-LMBs. © The Royal Society of Chemistry 2021. -
dc.language English -
dc.publisher Royal Society of Chemistry -
dc.title Enhanced compatibility of a polymer-based electrolyte with Li-metal for stable and dendrite-free all-solid-state Li-metal batteries -
dc.type Article -
dc.identifier.doi 10.1039/d1ta06886e -
dc.identifier.wosid 000722660100001 -
dc.identifier.scopusid 2-s2.0-85121525161 -
dc.identifier.bibliographicCitation Journal of Materials Chemistry A, v.9, no.48, pp.27304 - 27319 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus IONIC-CONDUCTIVITY ENHANCEMENT -
dc.subject.keywordPlus CORE-SHELL STRUCTURE -
dc.subject.keywordPlus ELECTROCHEMICAL PERFORMANCE -
dc.subject.keywordPlus OXIDE) ELECTROLYTES -
dc.subject.keywordPlus HIGH-VOLTAGE -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus MEMBRANE -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus NANOCOMPOSITE -
dc.subject.keywordPlus NANOPARTICLES -
dc.identifier.url https://doi.org/10.1039/D1TA90265B -
dc.citation.endPage 27319 -
dc.citation.number 48 -
dc.citation.startPage 27304 -
dc.citation.title Journal of Materials Chemistry A -
dc.citation.volume 9 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Energy Technology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE