Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Jeong, Wooseong -
dc.contributor.author Lee, Seonmin -
dc.contributor.author Yoo, Seungsun -
dc.contributor.author Park, Seoyeon -
dc.contributor.author Choi, Hyeokjoo -
dc.contributor.author Bae, Jihoon -
dc.contributor.author Lee, Yeokyung -
dc.contributor.author Woo, Kyoohee -
dc.contributor.author Choi, Ji-Hyuk -
dc.contributor.author Lee, Sungwon -
dc.date.accessioned 2022-01-04T11:00:03Z -
dc.date.available 2022-01-04T11:00:03Z -
dc.date.created 2021-12-30 -
dc.date.issued 2021-12 -
dc.identifier.issn 1944-8244 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/16034 -
dc.description.abstract Polymer nanofiber-based porous structures ("breathable devices") have been developed for breathable epidermal electrodes, piezoelectric nanogenerators, temperature sensors, and strain sensors, but their applications are limited because increasing the porosity reduces device robustness. Herein, we report an approach to produce ultradurable, cost-effective breathable electronics using a hierarchical metal nanowire network and an optimized photonic sintering process. Photonic sintering significantly reduces the sheet resistance (16.25 to 6.32 ω sq-1) and is 40% more effective than conventional thermal annealing (sheet resistance: 12.99 ω sq-1). The mechanical durability of the sintered (648.9 ω sq-1) sample is notably improved compared to that of the untreated (disconnected) and annealed (19.1 kω sq-1) samples after 10,000 deformation cycles at 40% tensile strain. The sintered sample exhibits ∼29 times less change in electrical performance compared to the thermally annealed sample. This approach will lead to the development of affordable and ultradurable commercial breathable electronics. © 2021 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title A Hierarchical Metal Nanowire Network Structure for Durable, Cost-Effective, Stretchable, and Breathable Electronics -
dc.type Article -
dc.identifier.doi 10.1021/acsami.1c18538 -
dc.identifier.wosid 000731616700001 -
dc.identifier.scopusid 2-s2.0-85121625107 -
dc.identifier.bibliographicCitation ACS Applied Materials & Interfaces, v.13, no.50, pp.60425 - 60432 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor photonic sintering -
dc.subject.keywordAuthor nanomesh electrode -
dc.subject.keywordAuthor biometric device -
dc.subject.keywordAuthor breathable device -
dc.subject.keywordAuthor facile manufacturing -
dc.subject.keywordAuthor health monitoring -
dc.subject.keywordPlus INFLAMMATION-FREE -
dc.subject.keywordPlus SENSOR -
dc.citation.endPage 60432 -
dc.citation.number 50 -
dc.citation.startPage 60425 -
dc.citation.title ACS Applied Materials & Interfaces -
dc.citation.volume 13 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Bio-Harmonized Device Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE