Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Yesudoss, David Kumar -
dc.contributor.author Byungchan Han -
dc.contributor.author Shanmugam, Sangaraju -
dc.contributor.author Chun, Hoje -
dc.date.accessioned 2022-01-05T12:00:39Z -
dc.date.available 2022-01-05T12:00:39Z -
dc.date.created 2021-11-21 -
dc.date.issued 2022-05 -
dc.identifier.issn 0926-3373 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/16046 -
dc.description.abstract Electrochemical ammonia synthesis through the atmospheric nitrogen reduction reaction (NRR) is a promising method for sustainable fertilizer and carbon-free hydrogen energy carriers. The inevitable selectivity gap against hydrogen evolution reaction and inert nitrogen (N2) hinders the device-level usage of nitrogen cathodes. In this work, we report engineered electrocatalyst/support interface of NbTiO4 nanoparticles supported on nitrogen-doped carbon nanorods (NbTiO4@NCNR) to catalyze NRR. Insisted by the pitfalls to rationally design N2 reduction catalysts, the strong catalyst-support interaction strategy is adapted to tune the selectivity towards NRR. Electrochemical tests reveal that NbTiO4@NCNR hybrid accelerates a 10-fold increase in N2 selectivity compared to pure metal oxide. Using first-principles calculations, we identify the underlying mechanism of enhanced performance: bridging bonds in the interface as electron transport channels to promote the N2 reduction kinetics. Essentially, this study provides an insight into how to overcome the immense kinetic barrier of NRR using smartly engineered interfaces of hybrid materials. © 2021 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier BV -
dc.title Accelerated N2 Reduction Kinetics in Hybrid Interfaces of NbTiO4 and Nitrogen-doped Carbon Nanorod via Synergistic Electronic Coupling Effect -
dc.type Article -
dc.identifier.doi 10.1016/j.apcatb.2021.120938 -
dc.identifier.wosid 000788166900004 -
dc.identifier.scopusid 2-s2.0-85120051918 -
dc.identifier.bibliographicCitation Applied Catalysis B: Environmental, v.304 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Nitrogen reduction reaction -
dc.subject.keywordAuthor Electrochemical ammonia synthesis -
dc.subject.keywordAuthor Strong catalyst-support interaction -
dc.subject.keywordAuthor NbTiO4 -
dc.subject.keywordAuthor Hybrid catalyst -
dc.subject.keywordPlus Ammonia -
dc.subject.keywordPlus Calculations -
dc.subject.keywordPlus Carbon -
dc.subject.keywordPlus Catalyst selectivity -
dc.subject.keywordPlus Doping (additives) -
dc.subject.keywordPlus Electrocatalysts -
dc.subject.keywordPlus Electron transport properties -
dc.subject.keywordPlus Hybrid materials -
dc.subject.keywordPlus Kinetic theory -
dc.subject.keywordPlus Kinetics -
dc.subject.keywordPlus Metals -
dc.subject.keywordPlus Nitrogen fixation -
dc.subject.keywordPlus Reaction kinetics -
dc.subject.keywordPlus Strontium titanates -
dc.citation.title Applied Catalysis B: Environmental -
dc.citation.volume 304 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Engineering -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Engineering, Environmental; Engineering, Chemical -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Advanced Energy Materials Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE