Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Jung, Minkyung -
dc.contributor.author Rickhaus, Peter -
dc.contributor.author Zihlmann, Simon -
dc.contributor.author Makk, Peter -
dc.contributor.author Schonenberger, Christian -
dc.date.available 2017-05-11T01:38:56Z -
dc.date.created 2017-04-10 -
dc.date.issued 2016-11 -
dc.identifier.issn 1530-6984 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/1606 -
dc.description.abstract We explore the potential of bilayer graphene as a cryogenic microwave photodetector by studying the microwave absorption in fully suspended clean bilayer graphene p-n junctions in the frequency range of 1-5 GHz at a temperature of 8 K. We observe a distinct photocurrent signal if the device is gated into the p-n regime, while there is almost no signal for unipolar doping in either the n-n or p-p regimes. Most surprisingly, the photocurrent strongly peaks when one side of the junction is gated to the Dirac point (charge-neutrality point CNP), while the other remains in a highly doped state. This is different to previous results where optical radiation was used. We propose a new mechanism based on the phototermal effect explaining the large signal. It requires contact doping and a distinctly different transport mechanism on both sides: one side of graphene is ballistic and the other diffusive. By engineering partially diffusive and partially ballistic devices, the photocurrent can drastically be enhanced. © 2016 American Chemical Society. -
dc.publisher American Chemical Society -
dc.title Microwave Photodetection in an Ultraclean Suspended Bilayer Graphene p-n Junction -
dc.type Article -
dc.identifier.doi 10.1021/acs.nanolett.6b03078 -
dc.identifier.scopusid 2-s2.0-84994717904 -
dc.identifier.bibliographicCitation Nano Letters, v.16, no.11, pp.6988 - 6993 -
dc.subject.keywordAuthor Bilayer graphene -
dc.subject.keywordAuthor photocurrent -
dc.subject.keywordAuthor photodetector -
dc.subject.keywordAuthor microwave -
dc.subject.keywordAuthor photothermoelectric effect -
dc.subject.keywordAuthor ballistic graphene -
dc.subject.keywordPlus Ballistic Devices -
dc.subject.keywordPlus Ballistic Graphene -
dc.subject.keywordPlus Ballistics -
dc.subject.keywordPlus Bilayer Graphene -
dc.subject.keywordPlus Charge Neutrality -
dc.subject.keywordPlus Graphene -
dc.subject.keywordPlus MICROWAVE -
dc.subject.keywordPlus Microwave Absorption -
dc.subject.keywordPlus Microwaves -
dc.subject.keywordPlus Optical Radiations -
dc.subject.keywordPlus Photo-Thermoelectric -
dc.subject.keywordPlus PHOTOCURRENT -
dc.subject.keywordPlus Photocurrent Signals -
dc.subject.keywordPlus Photocurrents -
dc.subject.keywordPlus Photodetector -
dc.subject.keywordPlus Photodetectors -
dc.subject.keywordPlus Photons -
dc.subject.keywordPlus PHOTORESPONSE -
dc.subject.keywordPlus Photothermoelectric Effect -
dc.subject.keywordPlus Reconfigurable Hardware -
dc.subject.keywordPlus Semiconductor Junctions -
dc.subject.keywordPlus TRANSPORT -
dc.subject.keywordPlus Transport Mechanism -
dc.citation.endPage 6993 -
dc.citation.number 11 -
dc.citation.startPage 6988 -
dc.citation.title Nano Letters -
dc.citation.volume 16 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Nanotechnology 1. Journal Articles
Division of Nanotechnology Quantum Nanoelectronic Devices Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE