WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Jung, Minkyung | - |
| dc.contributor.author | Rickhaus, Peter | - |
| dc.contributor.author | Zihlmann, Simon | - |
| dc.contributor.author | Makk, Peter | - |
| dc.contributor.author | Schonenberger, Christian | - |
| dc.date.available | 2017-05-11T01:38:56Z | - |
| dc.date.created | 2017-04-10 | - |
| dc.date.issued | 2016-11 | - |
| dc.identifier.issn | 1530-6984 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/1606 | - |
| dc.description.abstract | We explore the potential of bilayer graphene as a cryogenic microwave photodetector by studying the microwave absorption in fully suspended clean bilayer graphene p-n junctions in the frequency range of 1-5 GHz at a temperature of 8 K. We observe a distinct photocurrent signal if the device is gated into the p-n regime, while there is almost no signal for unipolar doping in either the n-n or p-p regimes. Most surprisingly, the photocurrent strongly peaks when one side of the junction is gated to the Dirac point (charge-neutrality point CNP), while the other remains in a highly doped state. This is different to previous results where optical radiation was used. We propose a new mechanism based on the phototermal effect explaining the large signal. It requires contact doping and a distinctly different transport mechanism on both sides: one side of graphene is ballistic and the other diffusive. By engineering partially diffusive and partially ballistic devices, the photocurrent can drastically be enhanced. © 2016 American Chemical Society. | - |
| dc.publisher | American Chemical Society | - |
| dc.title | Microwave Photodetection in an Ultraclean Suspended Bilayer Graphene p-n Junction | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1021/acs.nanolett.6b03078 | - |
| dc.identifier.scopusid | 2-s2.0-84994717904 | - |
| dc.identifier.bibliographicCitation | Jung, Minkyung. (2016-11). Microwave Photodetection in an Ultraclean Suspended Bilayer Graphene p-n Junction. Nano Letters, 16(11), 6988–6993. doi: 10.1021/acs.nanolett.6b03078 | - |
| dc.subject.keywordAuthor | Bilayer graphene | - |
| dc.subject.keywordAuthor | photocurrent | - |
| dc.subject.keywordAuthor | photodetector | - |
| dc.subject.keywordAuthor | microwave | - |
| dc.subject.keywordAuthor | photothermoelectric effect | - |
| dc.subject.keywordAuthor | ballistic graphene | - |
| dc.subject.keywordPlus | Ballistic Devices | - |
| dc.subject.keywordPlus | Ballistic Graphene | - |
| dc.subject.keywordPlus | Ballistics | - |
| dc.subject.keywordPlus | Bilayer Graphene | - |
| dc.subject.keywordPlus | Charge Neutrality | - |
| dc.subject.keywordPlus | Graphene | - |
| dc.subject.keywordPlus | MICROWAVE | - |
| dc.subject.keywordPlus | Microwave Absorption | - |
| dc.subject.keywordPlus | Microwaves | - |
| dc.subject.keywordPlus | Optical Radiations | - |
| dc.subject.keywordPlus | Photo-Thermoelectric | - |
| dc.subject.keywordPlus | PHOTOCURRENT | - |
| dc.subject.keywordPlus | Photocurrent Signals | - |
| dc.subject.keywordPlus | Photocurrents | - |
| dc.subject.keywordPlus | Photodetector | - |
| dc.subject.keywordPlus | Photodetectors | - |
| dc.subject.keywordPlus | Photons | - |
| dc.subject.keywordPlus | PHOTORESPONSE | - |
| dc.subject.keywordPlus | Photothermoelectric Effect | - |
| dc.subject.keywordPlus | Reconfigurable Hardware | - |
| dc.subject.keywordPlus | Semiconductor Junctions | - |
| dc.subject.keywordPlus | TRANSPORT | - |
| dc.subject.keywordPlus | Transport Mechanism | - |
| dc.citation.endPage | 6993 | - |
| dc.citation.number | 11 | - |
| dc.citation.startPage | 6988 | - |
| dc.citation.title | Nano Letters | - |
| dc.citation.volume | 16 | - |