Detail View

A Strategy for Wafer-Scale Crystalline MoS2 Thin Films with Controlled Morphology Using Pulsed Metal-Organic Chemical Vapor Deposition at Low Temperature
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Choi, Jeong-Hun -
dc.contributor.author Ha, Min-Ji -
dc.contributor.author Park, Jae Chan -
dc.contributor.author Park, Tae Joo -
dc.contributor.author Kim, Woo-Hee -
dc.contributor.author Lee, Myoung-Jae -
dc.contributor.author Ahn, Ji-Hoon -
dc.date.accessioned 2022-01-10T11:00:01Z -
dc.date.available 2022-01-10T11:00:01Z -
dc.date.created 2021-12-30 -
dc.date.issued 2022-02 -
dc.identifier.issn 2196-7350 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/16072 -
dc.description.abstract 2D semiconductor materials with layered crystal structures have attracted great interest as promising candidates for electronic, optoelectronic, and sensor applications due to their unique and superior characteristics. However, a large-area synthesis process for various applications and practical mass production is still lacking. In particular, there is a limitation in that a high process temperature and a very long process time are required to deposit a crystallized 2D material on a large area. Herein, pulsed metal-organic chemical vapor deposition (p-MOCVD) is proposed for the growth of wafer-scale crystalline MoS2 thin films to overcome the existing limitations. In the p-MOCVD process, precursors are repeatedly injected at regular intervals to enhance the migration of precursors on the surface. As a result, crystalline MoS2 is successfully synthesized at the lowest temperature (350 degrees C) reported so far in a very short process time of 550 s. In addition, it is found that the horizontal and vertical growth modes of MoS2 can be effectively controlled by adjusting key process parameters. Finally, various applications are presented by demonstrating the photodetector (detectivity = 18.1 x 10(6) at light power of 1 mW) and chemical sensor (response = 38% at 100 ppm of NO2 gas) devices. -
dc.language English -
dc.publisher John Wiley and Sons Ltd -
dc.title A Strategy for Wafer-Scale Crystalline MoS2 Thin Films with Controlled Morphology Using Pulsed Metal-Organic Chemical Vapor Deposition at Low Temperature -
dc.type Article -
dc.identifier.doi 10.1002/admi.202101785 -
dc.identifier.wosid 000731205600001 -
dc.identifier.scopusid 2-s2.0-85121417101 -
dc.identifier.bibliographicCitation Choi, Jeong-Hun. (2022-02). A Strategy for Wafer-Scale Crystalline MoS2 Thin Films with Controlled Morphology Using Pulsed Metal-Organic Chemical Vapor Deposition at Low Temperature. Advanced Materials Interfaces, 9(4), 2101785. doi: 10.1002/admi.202101785 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor transition metal dichalcogenides -
dc.subject.keywordAuthor low temperature film growth -
dc.subject.keywordAuthor molybdenum disulfides -
dc.subject.keywordAuthor morphology control in MoS -
dc.subject.keywordAuthor (2) thin films -
dc.subject.keywordAuthor pulsed metal-organic chemical vapor deposition -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus SINGLE-LAYER MOS2 -
dc.subject.keywordPlus GAS-ADSORPTION -
dc.subject.keywordPlus GROWTH -
dc.subject.keywordPlus PHOTODETECTOR -
dc.subject.keywordPlus TRANSISTORS -
dc.subject.keywordPlus MECHANISMS -
dc.subject.keywordPlus NUCLEATION -
dc.subject.keywordPlus MONOLAYER -
dc.subject.keywordPlus ELECTRODE -
dc.citation.number 4 -
dc.citation.startPage 2101785 -
dc.citation.title Advanced Materials Interfaces -
dc.citation.volume 9 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이명재
Lee, Myoung-Jae이명재

Division of Nanotechnology

read more

Total Views & Downloads