WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Ringe, Stefan | - |
| dc.date.accessioned | 2022-01-24T02:30:01Z | - |
| dc.date.available | 2022-01-24T02:30:01Z | - |
| dc.date.created | 2022-01-24 | - |
| dc.date.issued | 2021-11 | - |
| dc.identifier.issn | 2667-1093 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/16152 | - |
| dc.description.abstract | In this issue, Gao and Wang present new mechanistic insights about the electrochemical hydrogen evolution and oxidation reactions on Pt(111). For this they perform micro-kinetic modeling utilizing constant potential activation barriers derived from grand-canonical density functional theory to gain insights on the origin of the Tafel slope, coverages, and rate-limiting steps. | - |
| dc.language | English | - |
| dc.publisher | Elsevier BV | - |
| dc.title | Approaching in-depth mechanistic understanding of electrochemical hydrogen conversion from computational simulations | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1016/j.checat.2021.10.019 | - |
| dc.identifier.scopusid | 2-s2.0-85126077143 | - |
| dc.identifier.bibliographicCitation | Ringe, Stefan. (2021-11). Approaching in-depth mechanistic understanding of electrochemical hydrogen conversion from computational simulations. Chem Catalysis, 1(6), 1160–1162. doi: 10.1016/j.checat.2021.10.019 | - |
| dc.description.isOpenAccess | FALSE | - |
| dc.subject.keywordPlus | OXIDATION | - |
| dc.subject.keywordPlus | PH | - |
| dc.subject.keywordPlus | EVOLUTION | - |
| dc.citation.endPage | 1162 | - |
| dc.citation.number | 6 | - |
| dc.citation.startPage | 1160 | - |
| dc.citation.title | Chem Catalysis | - |
| dc.citation.volume | 1 | - |