Cited time in webofscience Cited time in scopus

Nanoporous Electrocatalysts Based Air Cathodes for Li-O2 Batteries

Title
Nanoporous Electrocatalysts Based Air Cathodes for Li-O2 Batteries
Alternative Title
리튬 산소전지용 다공성, 고효율 양극 촉매제 개발
Author(s)
Junhyung Hong
DGIST Authors
Junhyung HongSangaraju ShanmugamSoonhyun Kim
Advisor
상가라쥬 샨무감
Co-Advisor(s)
Soonhyun Kim
Issued Date
2022
Awarded Date
2022/02
Type
Thesis
Subject
Metal-air batteries, Air-cathode, Bifunctional catalyst, Core-shell structure, Ru-Fe bimetallic alloy, Molybdenum carbide, graphene nanosheet, 금속 공기전지 양극(공기극), 산소 발생 및 환원 반응 촉매제, 이원금속 합금촉매, 코어-쉘 구조, 몰리브데늄 카바이드, 그래핀 나노시트
Description
Metal-air batteries, Air-cathode, Bifunctional catalyst, Core-shell structure, Ru-Fe bimetallic alloy, Molybdenum carbide, graphene nanosheet, 금속 공기전지 양극(공기극), 산소 발생 및 환원 반응 촉매제, 이원금속 합금촉매, 코어-쉘 구조, 몰리브데늄 카바이드, 그래핀 나노시트
Abstract
The rechargeable metal-air battery has received lots of interest due to its 3-fold higher energy density than Li-ion batteries and environmental-friendly characteristics. Notably, unique architectures with sufficient pore structures are necessary for tackling the significant drawbacks of Li-air battery such as sluggish kinetics toward oxygen redox reaction and slow mass transport on the cathode. Designing a bifunctional catalyst with high efficiency is a challenge for decomposing contacting parts between electrolyte and Li2O2. We introduce a newly synthesized electrocatalyst having a porous nanostructure to accommodate and decompose the discharge product, Li2O2. We first focus on designing RuFe nanoparticles embedded in high surface area nitrogen-doped mesoporous carbon. The fabricated RuFe@NC-900 catalyst exhibits a specific surface area (677 m2g-1), pore diameter (9.52 nm), and high pore volume (0.3 cm3g-1). Also, it displays high oxygen reduction and evolution reactions activity and exhibited excellent bifunctional activity (ΔE) of 0.73 V vs. RHE compared to the benchmark catalyst, 40wt% Pt/C+RuO2 substantiates the excellent catalytic activity as an oxygen electrode. The potential practical application is further demonstrated by using it as an air cathode for rechargeable metal-air batteries. The Li-O2 battery constructed with this cathode exhibited robust reversibility with negligible discharge voltage loss. Further, The Zn-air battery constructed with this cathode achieved a specific capacity of 751 mAh gZn-1 and durable cyclability with discharge and charge overpotential (ΔEc-d) of 0.74 V for 160 hours.
In the second part of the thesis work, Mo2C Nanoplatelet supported on the graphene nanosheets was introduced. A series of Mo2C/graphene composite materials were prepared by varying the amounts of graphene to the ammonium molybdate. We denoted the designed electrocatalysts as Mo2C@graphene (x: y =2: 1, 2: 3, 2: 4) depending on the amounts of the commercial graphene sheet (y). In these protocols, the morphologies and porosity are variable when molybdenum carbide is interconnected with elevated graphene amounts as examined by FE-SEM and BET analysis. Also, the Mo2C@graphene (2: 4) electrocatalyst delivered a discharge capacity of 12,867 mAh g-1 and charge capacity of 11,739 mAh g-1, with a round trip efficiency (RE) of 65%. Further, it showed improved cycle stability until 88 cycles with negligible discharge-charge voltage loss. Compared to Mo2C@graphene (2: 1) electrocatalyst, which showed round trip efficiency of 60% and less stable cycle performance in a similar condition, Mo2C@graphene (2: 4) electrocatalyst was noticeable. This work implements a new pathway of designing graphitic nature’s Mo2C@graphene hybrid catalyst with facile synthesis methodology using Swagelok cell, holding a great potential in promoting the advancement of the Li-O2 battery. | 재충전이 가능한 금속-공기 전지는 리튬 이온 전지 대비 에너지 밀도가 3배 이상 높고 구동 측면에서 친환경적이라는 장점이 있어 많은 주목을 받고 있다. 특히, 양극에서 발생되는 산소 산화, 환원 반응에 대한 느린 반응 속도 및 물질 전달 속도로 인한 문제를 해결하려면 충분한 크기의 기공을 가진 물질을 필요로 한다. 전해질과 방전 생성물인 리튬 과산화물이 접촉하게 되는데, 그 반응으로 생성된 물질을 분해하기 위한, 이중 기능성 촉매제를 설계하는 것은 어려운 과제 중 하나이다. 본 학위 논문에서는 방전 생성물인 리튬 과산화물을 효율적으로 저장하고 분해하기 위해 합성된 다공성 나누 구조의 촉매제를 소개하고자 한다. 먼저, 높은 비 표면적의 질소가 도핑된 다공성 탄소 물질에 루테늄(Ru), 철(Fe) 나노 입자를 담지하는 촉매 설계에 중점을 뒀다. 합성된 RuFe@NC-900 촉매는 677 m2g-1의 비표면적, 9.52 nm의 기공 직경 및 0.3 cm3g-1의 기공 부피를 보였다. 나아가, 3전극 실험에서 상업용 40wt% Pt/C+RuO2 촉매 대비 0.73 V의 우수한 산소 산화, 환원 반응 과전압을 나타내어 산소 전극으로써 우수한 촉매 활성을 입증했다. 때문에 본 촉매를 이용해 금속 공기 전지 양극 촉매로써 적용해 볼 수 있었고, 촉매를 코팅한 리튬 산소 전지는 방전 전압 손실이 거의 없을 정도로 좋은 가역 성능을 보였다. 또한, 이 양극이 적용된 아연 공기 전지는 751 mAh gZn-1의 용량과 160시간 동안 0.74 V 의 충 방전 과전압을 나타냈다.
두번 째로 소개하고자 하는 촉매제는 그래핀 나노시트에 담지된 몰리브데늄 카바이드 물질이다. 몰리브데늄이 포함된 전구체에 그래핀 함유량을 달리한 다양한 종류의 복합 물질이 합성되었다. 이 절차에 따른 물질의 형상과 기공의 크기는 카바이드 물질이 그래핀 시트 담지에 결합되는 정도에 따라 구별되었다. 또한, 촉매제는 graphene(y) 함유량만 달리하였기에 Mo2C@graphene (x: y = 2: 1, 2: 3, 2: 4)이라고 명명했다. 리튬 산소 전지 성능 테스트에서 Mo2C@그래핀(2: 4) 촉매제는 12,867 mAh g-1의 방전 용량과 11,739 mAh g-1의 충전 용량 및 65%의 전지 효율 성능(RE)을 보였다. 또한, 88 사이클까지 개선된 사이클 안정성을 보였으며 충방전 전압 손실은 미미했다. 비슷한 조건에서 전지 효율 성능이 60%에 달하고 안정성이 상대적으로 낮은 Mo2C@graphene(2:1) 촉매제와 비교하면 Mo2C@graphene(2:4) 촉매재의 성능이 눈에 띄었다. 이 연구는 Swagelok 셀을 이용한 손쉬운 합성 방법으로 흑연화된 카본을 함유한 Mo2C@그래핀 하이브리드 촉매를 설계하는 새로운 합성 방법론을 구현했으며 차세대 리튬 산소 전지 기술력 향상에 기여할 잠재력을 갖고 있다.
Table Of Contents
I. Introduction 1
1.1 Forward (Theoretical background) 1
1.2 Non-aqueous Li-O2 battery system 3
1.2.1 Major characteristics 3
1.2.2 Working principles of Non-aqueous Li-air battery system 5
1.3 Overview of Zn-air battery system 5
1.3.1 Major characteristics 5
1.3.2 Main drawbacks of Zn-air battery system 6
1.4 Objective and research flow of this work 8
II. Experimental section 11
2.1 Synthesis of RuFe@NC-900(5h) electrocatalyst 11
2.1.1 Materials 11
2.1.2 Preparation of RuFe@NC-900(5h) electrocatalyst 11
2.1.3 Ru@NC-900(5h), Fe@NC-900(5h), NC-900(5h) electrocatalyst 12
2.2 Synthesis of Molybdenum carbide contained two types of electrocatalyst 13
2.2.1 Materials 13
2.2.2 Synthesis of Mo2C@graphene catalyst 13
2.2.3 Synthesis of Mo2C-Co2C@Carbon composite catalyst 14
III. Characterization 16
3.1 Instrumentation 16
3.2 Electrochemical analysis 17
3.2.1 Evaluation method using with 3 electrodes half-cell system 17
3.2.2 Long-term OER catalyst stability test using with H-type cell 19
3.3 Metal-air battery studies 20
3.3.1 Li-O2 and Zn-air battery cathode fabrication 20
3.3.2 Calculation methods for determining the efficiency of Li-O2 battery 21
3.3.3 Calculation methods for determining discharge capacity of Zn-air battery 21
IV. Results and discussion 22
4.1 RuFe alloy nanoparticles supported mesoporous carbon as efficient catalyst for Li-O2 batteries 22
4.1.1 Physiochemical analysis 22
4.1.2 Morphology analysis 31
4.1.3 Studies on electrochemical activities of catalysts 37
4.1.4 Studies on electrochemical durability test and post-XPS analysis 42
4.1.5 Studies on rechargeable Li-O2 battery 46
4.1.6 Rechargeable Li-O2 battery studies and electrochemical impedance spectroscopy measurement & analyses 49
4.1.7 Galvanostatic cycling profiles of all synthesized catalysts for cathode electrode and LED illumination demonstration 54
4.1.8 Post–analysis of the RuFe@NC-900(5h) electrode 57
4.1.9 Rechargeable Zn-air battery studies 61
4.1.10 Summary 64
4.2 Molybdenum carbide nanoparticles embedded on graphene sheets as highly efficient electrocatalyst for rechargeable Li-O2 battery 65
4.2.1 Structural analysis 65
4.2.2 Morphology analysis 71
4.2.3 Surface composition and electronic structure analysis 78
4.2.4 Li-O2 battery studies 81
4.2.5 Summary 85
V. Conclusions 86
References 87
국문요약문 99
URI
http://dgist.dcollection.net/common/orgView/200000595605

http://hdl.handle.net/20.500.11750/16306
DOI
10.22677/thesis.200000595605
Degree
Master
Department
Energy Science & Engineering
Publisher
DGIST
Related Researcher
  • 상가라쥬샨무감 Shanmugam, Sangaraju
  • Research Interests Electrocatalysts for fuel cells; water splitting; metal-air batteries; Polymer electrolyte membranes for fuel cells; flow batteries; Hydrogen generation and utilization
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE