Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor 서정필 -
dc.contributor.author Woo Yong Kim -
dc.date.accessioned 2022-03-07T16:00:38Z -
dc.date.available 2022-03-07T16:00:38Z -
dc.date.issued 2022 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000596069 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/16323 -
dc.description Transition metal dichalcogenides, Scanning tunneling microscopy, 𝑃𝑑𝑆𝑒2 -
dc.description.abstract Two-dimensional (2D) material is promising topic as their noble properties which differs from bulk materials. In 2004, graphene had foliated from graphite and opened the gate of 2D material study. 2D material have great potential of applications in transistor, photodetector, and memory device. The researchers found that it is hard to use graphene at device application due to its band structure, transition metal dichalcogenides (TMDC) get attention by its controllable band gap.
TMDC is layered material which has strong covalent in-layer bonding and weak van der Waals interlayer bonding. Like graphene, TMDC can exfoliate monolayer from the bulk material. TMDC has variable electronic band gap which band gap of bulk and monolayer are different. This variable electronic band gap can be applied to nanoelectronics and optoelectronics.
Palladium diselenide (PdSe_2) which is one of TMDC has unique puckered pentagonal structure with orthorhombic unit cell. Density functional theory (DFT) calculation shows that PdSe_2 has layer-dependent electronic band gap, 0.03eV for bulk, 1.43eV for monolayer, respectively.
In this paper, we investigate electronic properties of PdSe_2 by using scanning tunneling microscopy (STM). Due to the semiconducting properties of PdSe_2, the resistivity of PdSe_2 increase when temperature down. We use double cleaving technique to reduce the resistivity. We can get clear data of topography and local density of state (LDOS). All the STM experiment conducted at cryogenic condition at temperature 23K and ultra-high vacuum condition 〖10〗^(-10) torr. Topography shows clear pattern of zigzag which is due to top layer selenium atoms. The differential conductivity spectroscopy shows band gap of PdSe_2. However, the band gap and lattice constant of our STM data cannot be explainable, which requires further research.
|본 논문은 팔라듐 디셀렌화물(PdSe_2)을 주사 터널링 현미경으로 연구를 진행하였다. 전이금속 디칼코겐화합물(TMDC)은 반데르발스 층간 결합이 약한 층상 물질로, 그래핀과 같이 층과 층을 분리할 수 있는 그래핀 대체물질의 유력한 후보군이다. 그래핀은 띠 틈을 소자에 응용하기 매우 어려웠지만, 전이금속 디칼코겐화합물의 경우 1~2eV 사이의 가변적인 전자 띠 틈을 가지고 있어 나노전자 및 광전자공학에 응용 가능하다는 장점을 갖고 있다.
팔라듐 디셀렌화물(PdSe_2)은 전이금속 디칼코겐화합물 중 하나로, 독특하게도 다른 전이금속 디칼코겐화합물과는 다르게 주름진 오각형 결정 구조를 가지고 있다. 밀도 범함수 이론 및 실험에 의하면 팔라듐 디셀렌화물은 층의 두께에 따라 전자 띠 틈이 달라진다는 특성을 가지고 있다. 벌크의 경우에는 0.03eV로 준금속의 양상을 보여주지만, 단일층의 경우에는 1.43eV로 반도체의 양상을 보여준다.
우리는 주사 터널링 현미경을 통해 팔라듐 디셀렌화물의 표면 지형 사진과 국소 상태 밀도에 대한 데이터를 얻었다. 팔라듐 디셀렌화물은 벌크 상태의 샘플을 초고진공(UHV)에서 쪼깨어서 얇게 만들었고, 이를 측정하였다. 팔라듐 디셀렌화물의 표면에서 최상층의 셀레늄 원자로 인한 지그재그 패턴을 관측할 수 있었으며, dI/dV를 통해서 국소 상태 밀도를 얻을 수 있었고, 이를 통해 팔라듐 디셀렌화물의 전자 띠 틈을 측정할 수 있었다. 그러나 측정한 전자 띠 틈이 문헌 값보다 약 2배 정도 크게 측정되는 이유를 설명할 수 없었기에 이에 대한 추가 연구가 필요하다.
-
dc.description.statementofresponsibility Y -
dc.description.tableofcontents Ⅰ. Introduction 1
Ⅱ. Scanning tunneling microscopy 3
2.1 Introduction 3
2.2 Bardeen’s tunneling theory 4
2.3 Feedback loop and topography 7
2.4 Scanning tunneling spectroscopy 9
2.5 Lock in technique 10
Ⅲ. Transition metal dichalcogenide 12
3.1 Introduction 12
3.2 Palladium diselenide 13
Ⅳ. Experimental methods 16
4.1 Sampling 16
4.2 Tip making 19
4.3 Tip cleaning 23
4.4 15K STM with ultra-high vacuum system 25
Ⅴ. PdSe_2 STM experiment 27
5.1 Topography and dI/dV 27
5.2 Discussion 32
Ⅵ. Conclusion 33
Reference 34
Summary in Korean 39
-
dc.format.extent 39 -
dc.language eng -
dc.publisher DGIST -
dc.source /home/dspace/dspace53/upload/200000596069.pdf -
dc.subject Transition metal dichalcogenides, Scanning tunneling microscopy, 𝑃𝑑𝑆𝑒2 -
dc.title Scanning tunneling microscopy study of PdSe2 -
dc.title.alternative 팔라듐 디셀렌화물에 대한 주사 터널링 현미경 연구 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.200000596069 -
dc.description.degree Master -
dc.contributor.department Emerging Materials Science -
dc.contributor.coadvisor Keeseong Park -
dc.date.awarded 2022/02 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.MM 김66 202202 -
dc.date.accepted 1/21/22 -
dc.contributor.alternativeDepartment 신물질과학전공 -
dc.embargo.liftdate 20220117 -
dc.contributor.affiliatedAuthor Woo Yong Kim -
dc.contributor.affiliatedAuthor Jungpil Seo -
dc.contributor.affiliatedAuthor Keeseong Park -
dc.contributor.alternativeName 김우용 -
dc.contributor.alternativeName Jungpil Seo -
dc.contributor.alternativeName 박기성 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE