Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor 이호춘 -
dc.contributor.author Hyejin Lee -
dc.date.accessioned 2022-07-07T02:29:07Z -
dc.date.available 2022-07-07T02:29:07Z -
dc.date.issued 2021 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000362925 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/16670 -
dc.description.statementofresponsibility N -
dc.description.tableofcontents I. INTRODUCTION 1
1.1 Carbonate-based electrolytes 1
1.2 DMSO-based electrolytes 2
1.3. Nitrile-based electrolytes 2
1.4. References 4

II. THEORY 5
2.1 Raman spectroscopy 5
2.1.1 Determination of the coordination/solvation numbers 5
2.2 Dielectric relaxation spectroscopy (DRS) 6
2.2.1 Dielectric measurement 6
2.2.2 Spectra analysis 10
2.2.3 Deriving the concentration of ion species 12
2.2.4 Complimentary information to the Raman 14
2.3. Self-diffusivity of the salt 15
2.3.1 Derivation of Dsalt and improved conductivity parameter 15
2.4 Ion conduction mechanism 17
2.4.1 Walden plot 17
2.4.2 Vehicular and hopping conduction 17
2.5 References 19

III. EXPERIMENT 24
3.1 Materials 24
3.2 Ionic conductivity and viscosity 24
3.3 Raman spectroscopy 24
3.4 Dielectric relaxation spectroscopy (DRS) 25
3.5 Pulsed-field Gradient Nuclear magnetic resonance (PFG-NMR) 26
3.6 Density Function Theory (DFT) calculation 27
3.7 References 29

IV. RESULT and DISCUSSION 30
4.1 Single carbonates electrolyte DMC vs. DEC 30
4.1.1 Ionic conductivity, viscosity, and Walden plot 30
4.1.2 Ion speciation by Raman spectroscopy 33
4.1.3 Dielectric properties of solutions 34
4.1.4 Solvent speciation 35
4.1.5 Density functional theory (DFT) calculation 41
4.1.6 Conclusion 46
4.2 Mixed Carbonate electrolytes 47
4.2.1 Ionic conductivity and viscosity 49
4.2.2 A degree of salt dissociation 51
4.2.3 Ion speciation by DRS 55
4.2.4 Solvent speciation 59
4.2.5 Density functional theory (DFT) calculation 62
4.2.6 Conclusion 65
4.3 DMSO-based electrolytes 67
4.3.1 Ionic conductivity, viscosity, and Walden plot 67
4.3.2 Ionic speciation 69
4.3.3 Solvent speciation 75
4.3.4 Ionic conduction 78
4.3.5 Conclusion 82
4.4 Li-ion hopping conduction in Acetonitrile (AN) 83
4.4.1 Ionic conductivity and viscosity 83
4.4.2 Self-diffusion coefficient 84
4.4.3 Solvent and ion speciation 86
4.4.4 Ion conduction mechanism 89
4.4.5 Rate performance in Li-ion batteries 94
4.4.6 Conclusion 97
4.5 References 99
-
dc.format.extent 108 -
dc.language eng -
dc.publisher DGIST -
dc.subject Li-ion battery, electrolytes, solution structure, Ion speciation, ion conduction, 리튬 이온 배터리 전해액, 전해액 구조, 이온 종 분화, 이온 전달 기작, 리튬 호핑 현상, 이온 전도도 -
dc.title Ion conduction and ionic speciation of Li-ion battery (LIB) electrolytes -
dc.title.alternative 리튬 이온 배터리 전해액의 용액 구조분석을 통한 이온 전달 기작 분석 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.200000362925 -
dc.description.degree Doctor -
dc.contributor.department Energy Science & Engineering -
dc.contributor.coadvisor Lee, Yong Min -
dc.date.awarded 2021/02 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.ED 이94 202102 -
dc.contributor.alternativeDepartment 에너지공학전공 -
dc.embargo.liftdate 2023-08-31 -
dc.contributor.affiliatedAuthor Hyejin Lee -
dc.contributor.affiliatedAuthor Lee, Hochun -
dc.contributor.affiliatedAuthor Lee, Yong Min -
dc.contributor.alternativeName 이혜진 -
dc.contributor.alternativeName Lee, Hochun -
dc.contributor.alternativeName 이용민 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE