Detail View

Simulation Study on Electrochemical Properties of Lithium-Ion Batteries under Various Operating Conditions
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.advisor 이용민 -
dc.contributor.author Sun Ho Park -
dc.date.accessioned 2022-07-07T02:29:07Z -
dc.date.available 2022-07-07T02:29:07Z -
dc.date.issued 2021 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000362980 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/16671 -
dc.description.abstract Since lithium-ion batteries (LIB) has high energy density, its market range is expanding from small devices to large-sized such as electric vehicles (EVs) or energy storage systems (ESSs). So, determining and predicting the performance or life of applications using LIBs is important. Especially, increasing the energy density of LIBs has been top priority in the battery industry. Consequently, the capacity (how many electrons can be stored within the cell) is the most frequently measured electrochemical specification at different C-rates and temperatures with voltage profiles. When small electric devices are the main application of LIBs, the capacity measured at low C-rates such as 0.2C is enough to design devices, because their power consumption is low. However, with the advent of the large-sized applications, which have to run a high-power electric motor using a limited number of LIBs, power has come into the limelight, and is considered to be as important as capacity. However, it is a time-consuming process to experimentally evaluate the performance of all applications or batteries. In order to overcome the stumbling block, computational calculation is necessary. This makes it possible to predict the battery’s rate of capacity loss or remain capacity.
Therefore, I fundamentally compared and analyzed both power and capacity values of two different type of LIB cells (cylinder and pouch type) to deduce generalized power and capacity sensitivities to temperature in this work. In addition, we focused the voltage profile changes depending on state of charges (SOCs) and temperatures within the optimal temperature range (15~35 °C). Moreover, I developed the model predicting the performance (e.g. capacity retention, voltage) of the commercial battery cell to overcome considerable money and time-waste while experiment.
-
dc.description.statementofresponsibility Y -
dc.description.tableofcontents I. Introduction 1
1.1 Overview 1
II. Power Sensitivity to Temperature in Lithium-ion Batteries: A Case Study with Cylindrical and Pouch Type Cells 3
2.1 Introduction 3
2.2 Experiment 5
2.2.1 Specifications of lithium-ion battery 5
2.2.2 Measurement of electrochemical properties 6
2.3 Results and discussion 7
2.3.1 Sensitivity of capacity to temperature 8
2.3.2 Sensitivity of power to temperature 10
2.4 Conclusion 12
III. Performance Prediction Model of Lithium-ion Batteries Based on Cathode Crack Degradation 27
3.1 Introduction 27
3.2 Experiment 28
3.3 Modeling 28
3.3.1 3-D Dimensional Thermal Cell Model based on Pseudo-2-Dimensional Model 29
3.3.2 Degradation of Solid Electrolyte Interphase (SEI) on the Negative Electrode 30
3.3.3 Supplements and Strategies for Additional Model considering the Positive Electrode Degradation 31
3.4 Results and Discussion 32
3.4.1 Initial Test Results 32
3.4.2 Calendar Life Test Results 33
3.4.3 Cycle Test in the Normal Conditions 33
3.4.4 Cycle Test in the Severe Conditions 34
3.4.5 ESS Operating Conditions 34
3.5 Conclusion 35
References 51
Summary (in Korean) 57
-
dc.format.extent 57 -
dc.language eng -
dc.publisher DGIST -
dc.subject Lithium-ion battery, Power evaluation, Electrochemical model, Life prediction model, 리튬 이온 전지, 출력 특성, 전기화학적 모델, 수명 예측 모델 -
dc.title Simulation Study on Electrochemical Properties of Lithium-Ion Batteries under Various Operating Conditions -
dc.title.alternative 리튬 이차 전지의 구동 환경에 따른 전기화학 특성 연구 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.200000362980 -
dc.description.alternativeAbstract 리튬이온전지 혹은 리튬이차전지 (LIB or LSB)는 에너지 밀도가 높기 때문에 소형 장치에서 전기 자동차 (EV) 또는 에너지 저장 시스템 (ESS)과 같은 대형으로 시장 범위가 확대되고 있다. 특히 화석 연료 고갈과 환경 문제로 기존 내연 기관 (ICE) 차량을 전기 자동차로 대체하는 움직임이 활발하다. 그러나 현재 EV의 주행 거리는 충전 당 400km로 제한되어 있으며 이는 ICE 차량 주행 거리의 절반 수준에 못 미친다. 이러한 이유로, LIB의 에너지 밀도를 높이는 것이 배터리 산업의 최우선 과제임은 틀림없다. 결과적으로, 용량 (셀 내에 저장될 수 있는 전자 수)은 전압 프로파일을 사용하여 다양한 C-rate 및 온도에서 가장 자주 측정되는 전기 화학적 특성이며, LIB가 사용된 소형 장치의 경우, 0.2C와 같은 낮은 C-rate에서 용량이 측정되며, 또한, 출력 소비가 적기 때문에 해당 율속으로 장치를 평가하기에 충분하다. 그러나, 제한된 수의 LIB를 사용하여 고출력 전기 모터를 구동해야하는 하이브리드 전기 자동차 (HEV)의 출현으로 출력의 우수성이 중요해지고 있으며, 이는 용량만큼 중요한 것으로 간주된다. 그러나, 용량 측정과 달리 HPPC (하이브리드 펄스 출력 특성화)와 같은 출력 측정은 실험적으로 측정 된 직류 내부 저항 (DC-IR)을 해당 출력 값으로 변환해야하기 때문에 비교적 복잡하다. 이와 같은 이유로, 출력 값은 문헌에서 용량만큼 자주 보고되지 않았다. -
dc.description.degree Master -
dc.contributor.department Energy Science & Engineering -
dc.identifier.bibliographicCitation Sun Ho Park. (2021). Simulation Study on Electrochemical Properties of Lithium-Ion Batteries under Various Operating Conditions. doi: 10.22677/thesis.200000362980 -
dc.contributor.coadvisor Hongkyung Lee -
dc.date.awarded 2021/02 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.EM 박54 202102 -
dc.contributor.alternativeDepartment 에너지공학전공 -
dc.contributor.affiliatedAuthor Sun Ho Park -
dc.contributor.affiliatedAuthor Yong Min Lee -
dc.contributor.affiliatedAuthor Hongkyung Lee -
dc.contributor.alternativeName 박선호 -
dc.contributor.alternativeName Yong Min Lee -
dc.contributor.alternativeName 이홍경 -
Show Simple Item Record

File Downloads

공유

qrcode
공유하기

Total Views & Downloads