Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor 이종원 -
dc.contributor.author Eunseo Won -
dc.date.accessioned 2022-08-17T16:00:15Z -
dc.date.available 2022-08-17T16:00:15Z -
dc.date.issued 2022 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000631074 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/16807 -
dc.description solid-state lithium battery, biphasic solid electrolyte, garnet, lithium metal, lithium-ion transport -
dc.description.abstract Solid-state lithium batteries (SSLBs) based on non-flammable inorganic solid electrolytes have been proposed as promising technical solutions to resolve safety issues caused by flammable organic liquid electrolytes of current Li-ion batteries. Biphasic solid electrolytes (BSEs) comprising Li+-conducting oxides and polymers have garnered significant interest for SSLBs because of their mechanical robustness and high Li+ conductivity. However, the non-uniform distribution of oxide particles and polymer species in BSEs may cause inhomogeneous Li+ conduction, thereby resulting in poor interfacial stability with electrodes during repeated charge–discharge cycles.
Herein, we report a Li7La3Zr2O12-based BSE with homogeneous Li+ transport pathways achieved by a metal–organic framework (MOF) layer. To regulate and homogenize the Li+ flux across the inter-face between the BSE and electrode, a free-standing BSE is integrated with the MOF layer. The MOF-integrated BSE forms smooth and uniform interfaces with nanoporous channels in contact with the electrodes, effectively enhancing the interfacial solid–solid contact and facilitating homogeneous Li+ transport. An SSLB with the MOF-BSE membrane shows enhanced cycling stability and rate-capability compared to the battery with bare BSE. This study demonstrates that the proposed electrolyte design provides an effective approach for improving the conducting properties and interfacial stability of BSEs for high-performance and long-cycling SSLBs.|본 논문은 가연성 유기 액체전해질을 사용하는 리튬이온 배터리의 안전성 문제를 해결하기 위한 유망한 연구 방향으로 불연성 무기 고체전해질 기반의 고체 리튬 금속 배터리를 제안한다. 고체전해질 재료 중, 산화물 및 고분자를 포함하는 복합 고체전해질은 높은 기계적 강성과 높은 리튬이온 전도성의 특징으로 고체 리튬 금속 배터리에서 상당한 관심을 받았다. 그러나 복합 고체전해질에서 산화물 입자와 고분자의 불균일한 분포는 불균일한 리튬이온 전도를 유도하여 반복되는 충방전 테스트 동안 전극과의 계면 안정성을 악화시킨다.
따라서 우리는 금속-유기 구조체 층을 통해 균질한 리튬이온 수송 경로를 가진 Li7La3Zr2O12 기반 복합 고체전해질을 보고한다. 복합 고체전해질과 전극 사이의 계면에서 리튬이온 플럭스를 조절하고 균일화하기 위해 복합 고체전해질과 금속-유기 구조체 층을 일체형으로 제작한다. 금속-유기 구조체가 통합된 복합 고체전해질은 전극과 나노 다공성 채널이 매끄럽게 접촉하여 균일한 계면을 형성하며 계면의 고체-고체 접촉 저항을 효과적으로 감소시키고 균일한 리튬이온 수송을 촉진한다. 또한, 복합 고체전해질을 적용한 고체 리튬 금속 배터리는 향상된 수명 특성과 속도 성능을 보여준다.
이 연구는 고성능 및 장기 수명의 고체 리튬 금속 배터리를 위한 복합 고체전해질의 전도성 특성과 계면 안정성을 개선하기 위한 효과적인 접근 방식을 제공한다.
-
dc.description.statementofresponsibility Y -
dc.description.tableofcontents Ⅰ. Introduction 1
Ⅱ. Literature survey 3
2.1 Garnet 3
2.2 Biphasic solid electrolyte 10
2.3 Plastic crystal 20
2.4 Metal–organic framework 23
Ⅲ. Experimental 27
3.1 Materials 27
3.2 Synthesis of MOF particles 27
3.3 Preparation of BSEs 28
3.4 Electrochemical simulations 29
3.5 Material characterizations 30
3.6 Electrochemical measurements 30
Ⅳ. Results and discussion 31
4.1 Redistribution of Li+ flux by nanoporous MOF layer 31
4.2 Preparation and characterization of MOF-integrated BSE membrane 34
4.3 Surface morphologies and mechanical properties of MOF-BSE 39
4.4 Ionic conducting properties of MOF-BSE 41
4.5 Interfacial compatibility of MOF-BSE with the electrode 44
Ⅴ. Conclusion 48
References 49
국문요약문 56
-
dc.format.extent 56 -
dc.language eng -
dc.publisher DGIST -
dc.source /home/dspace/dspace53/upload/200000631074.pdf -
dc.subject solid-state lithium battery, biphasic solid electrolyte, garnet, lithium metal, lithium-ion transport -
dc.title Modification of Biphasic Solid Electrolytes with a Metal–Organic Framework Layer for Lithium-Metal Batteries -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.200000631074 -
dc.description.degree Master -
dc.contributor.department Department of Energy Science and Engineering -
dc.contributor.coadvisor Ju-Hyuck Lee -
dc.date.awarded 2022/08 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.EM 원67 202208 -
dc.date.accepted 8/11/22 -
dc.contributor.alternativeDepartment 에너지공학과 -
dc.contributor.affiliatedAuthor Eunseo Won -
dc.contributor.affiliatedAuthor Jong-Won Lee -
dc.contributor.affiliatedAuthor Ju-Hyuck Lee -
dc.contributor.alternativeName 원은서 -
dc.contributor.alternativeName Jong-Won Lee -
dc.contributor.alternativeName 이주혁 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE