Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Zhang, Zhilong -
dc.contributor.author Sung, Jooyoung -
dc.contributor.author Toolan, Daniel T. W. -
dc.contributor.author Han, Sanyang -
dc.contributor.author Pandya, Raj -
dc.contributor.author Weir, Michael P. -
dc.contributor.author Xiao, James -
dc.contributor.author Dowland, Simon -
dc.contributor.author Liu, Mengxia -
dc.contributor.author Ryan, Anthony J. -
dc.contributor.author Jones, Richard A. L. -
dc.contributor.author Huang, Shujuan -
dc.contributor.author Rao, Akshay -
dc.date.accessioned 2022-10-26T06:30:07Z -
dc.date.available 2022-10-26T06:30:07Z -
dc.date.created 2022-03-08 -
dc.date.issued 2022-05 -
dc.identifier.issn 1476-1122 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/16930 -
dc.description.abstract Quantum dot (QD) solids are an emerging platform for developing a range of optoelectronic devices. Thus, understanding exciton dynamics is essential towards developing and optimizing QD devices. Here, using transient absorption microscopy, we reveal the initial exciton dynamics in QDs with femtosecond timescales. We observe high exciton diffusivity (similar to 10(2)cm(2)s(-1)) in lead chalcogenide QDs within the first few hundred femtoseconds after photoexcitation followed by a transition to a slower regime (similar to 10(-1)-1 cm(2)s(-1)). QD solids with larger interdot distances exhibit higher initial diffusivity and a delayed transition to the slower regime, while higher QD packing density and heterogeneity accelerate this transition. The fast transport regime occurs only in materials with exciton Bohr radii much larger than the QD sizes, suggesting the transport of delocalized excitons in this regime and a transition to slower transport governed by exciton localization. These findings suggest routes to control the optoelectronic properties of QD solids. -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title Ultrafast exciton transport at early times in quantum dot solids -
dc.type Article -
dc.identifier.doi 10.1038/s41563-022-01204-6 -
dc.identifier.wosid 000765658800001 -
dc.identifier.scopusid 2-s2.0-85125750116 -
dc.identifier.bibliographicCitation Nature Materials, v.21, no.5, pp.533 - 539 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus GIANT -
dc.subject.keywordPlus ENERGY-TRANSFER -
dc.subject.keywordPlus NANOCRYSTALS -
dc.subject.keywordPlus PBS -
dc.subject.keywordPlus DELOCALIZATION -
dc.subject.keywordPlus EMISSION -
dc.citation.endPage 539 -
dc.citation.number 5 -
dc.citation.startPage 533 -
dc.citation.title Nature Materials -
dc.citation.volume 21 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry FemtoLab for Advanced Energy Materials 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE