Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kastlunger, Georg -
dc.contributor.author Wang, Lei -
dc.contributor.author Govindarajan, Nitish -
dc.contributor.author Heenen, Hendrik H. -
dc.contributor.author Ringe, Stefan -
dc.contributor.author Jaramillo, Thomas -
dc.contributor.author Hahn, Christopher -
dc.contributor.author Chan, Karen -
dc.date.accessioned 2022-10-27T08:00:00Z -
dc.date.available 2022-10-27T08:00:00Z -
dc.date.created 2022-06-16 -
dc.date.issued 2022-04 -
dc.identifier.issn 2155-5435 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/16957 -
dc.description.abstract Electrochemical conversion of CO(2)into hydro-carbons and oxygenates is envisioned as a promising path towardclosing the carbon cycle in modern technology. To date, however,the reaction mechanisms toward the plethora of products aredisputed, complicating the search for alternative catalyst materials.To conclusively identify the rate-limiting steps in CO reduction onCu, we analyzed the mechanisms on the basis of constant-potentialdensity functional theory (DFT) kinetics and experiments at a widerange of pH values (3-13). Wefind that*CO dimerization isenergetically favored as the rate-limiting step toward multicarbonproducts. Thisfinding is consistent with our experiments, wherethe reaction rate is nearly unchanged on a standard hydrogenelectrode (SHE) potential scale, even under acidic conditions. Formethane, both theory and experiments indicate a change in the rate-limiting step with electrolyte pH from thefirst protonation stepunder acidic/neutral conditions to a later one under alkaline conditions. We also show, through a detailed analysis of themicrokinetics, that a surface combination of*CO and*H is inconsistent with the measured current densities and Tafel slopes.Finally, we discuss the implications of our understanding for future mechanistic studies and catalyst design. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Using pH Dependence to Understand Mechanisms in Electrochemical CO Reduction br -
dc.type Article -
dc.identifier.doi 10.1021/acscatal.1c05520 -
dc.identifier.scopusid 2-s2.0-85127862153 -
dc.identifier.bibliographicCitation ACS Catalysis, v.12, no.8, pp.4344 - 4357 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor electrochemical CO(2)reduction -
dc.subject.keywordAuthor density functional theory -
dc.subject.keywordAuthor electrocatalysis -
dc.subject.keywordAuthor pH dependence -
dc.subject.keywordAuthor Tafel slopes -
dc.subject.keywordAuthor reaction mechanism -
dc.subject.keywordAuthor copper -
dc.subject.keywordPlus ELECTRON-TRANSFER-REACTIONS -
dc.subject.keywordPlus CARBON-MONOXIDE -
dc.subject.keywordPlus POLYCRYSTALLINE COPPER -
dc.subject.keywordPlus ELECTROREDUCTION -
dc.subject.keywordPlus SIMULATION -
dc.subject.keywordPlus KINETICS -
dc.subject.keywordPlus DIOXIDE -
dc.subject.keywordPlus ENERGY -
dc.subject.keywordPlus CONFIGURATIONS -
dc.subject.keywordPlus INTERMEDIATE -
dc.citation.endPage 4357 -
dc.citation.number 8 -
dc.citation.startPage 4344 -
dc.citation.title ACS Catalysis -
dc.citation.volume 12 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Ab initio multi-scale engineering Lab(AIMS-E Lab) 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE