Detail View

Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kim, Kyeong Joon -
dc.contributor.author Lim, Chaesung -
dc.contributor.author Bae, Kyung Taek -
dc.contributor.author Lee, Jong Jun -
dc.contributor.author Oh, Mi Young -
dc.contributor.author Kim, Hyung Jun -
dc.contributor.author Kim, Hyunmin -
dc.contributor.author Kim, Guntae -
dc.contributor.author Shin, Tae Ho -
dc.contributor.author Han, Jeong Woo -
dc.contributor.author Lee, Kang Taek -
dc.date.accessioned 2022-11-17T11:40:14Z -
dc.date.available 2022-11-17T11:40:14Z -
dc.date.created 2022-06-16 -
dc.date.issued 2022-10 -
dc.identifier.issn 0926-3373 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17168 -
dc.description.abstract The reducibility of B-site elements in perovskite (ABO3) structures is one of the paramount factors that promote the in-situ exsolution of metallic nanocatalysts, and the phase transition of the support to a more stable structure under solid oxide cell (SOC) fuel electrode operating conditions. Herein, we develop a highly catalytically active and durable perovskite-based fuel electrode material—La0.6Sr0.4Co0.15Fe0.8Pd0.05O3- δ (LSCFP)—for reversible SOCs. The LSCFP material under the fuel electrode condition is fully transformed into a stable Ruddlesden-Popper phase decorated by bimetallic Co-Fe nanocatalysts. The SOC with LSCFP fuel electrode yielded outstanding performances in both fuel cell (2.00 W cm−2) and electrolysis cell (2.23 A/cm2 at 1.3 V) modes at 850 °C, with remarkable reversible-cyclic stability. These results clearly demonstrate that the novel LSCFP capable of concurrent phase transition and bimetallic exsolution in the reducing condition is a highly prospective candidate as a bifunctional fuel electrode for reversible SOCs. © 2022 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier BV -
dc.title Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells -
dc.type Article -
dc.identifier.doi 10.1016/j.apcatb.2022.121517 -
dc.identifier.wosid 000809944600002 -
dc.identifier.scopusid 2-s2.0-85130928200 -
dc.identifier.bibliographicCitation Kim, Kyeong Joon. (2022-10). Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells. Applied Catalysis B: Environmental, 314. doi: 10.1016/j.apcatb.2022.121517 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Electrochemical performances -
dc.subject.keywordAuthor In-situ exsolution -
dc.subject.keywordAuthor Phase transition -
dc.subject.keywordAuthor Reversible solid oxide cells -
dc.subject.keywordAuthor Bimetallic nanocatalysts -
dc.subject.keywordPlus ALLOY NANOPARTICLES -
dc.subject.keywordPlus STEAM ELECTROLYSIS -
dc.subject.keywordPlus ANODE MATERIAL -
dc.subject.keywordPlus OXIDATION -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus CATHODE -
dc.subject.keywordPlus COPALLADIUM -
dc.subject.keywordPlus IN-SITU GROWTH -
dc.subject.keywordPlus HIGH-PERFORMANCE -
dc.citation.title Applied Catalysis B: Environmental -
dc.citation.volume 314 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Engineering -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Engineering, Environmental; Engineering, Chemical -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads