Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Samdani, Jitendra Shashikant -
dc.contributor.author Sanetuntikul, Jakkid -
dc.contributor.author Shanmugam, Sangaraju -
dc.date.accessioned 2023-01-03T19:40:16Z -
dc.date.available 2023-01-03T19:40:16Z -
dc.date.created 2022-07-22 -
dc.date.issued 2022-07 -
dc.identifier.issn 0360-3199 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17289 -
dc.description.abstract The electrochemical oxidation of urea and hydrazine over self-supported Fe-doped Ni3S2/NF (Fe–Ni3S2/NF) nanostructured material is presented. Among the various reaction conditions Fe–Ni3S2/NF-2 prepared at 160 °C for 8 h using 0.03 mM Fe(NO3)3 shows the best results for the hydrazine and urea oxidation reactions. The potential values of 0.36, 1.39, and 1.59 V are required to achieve the current density of the 100 mA cm−2 in 1 M hydrazine (Hz), 0.33 M urea, and 1 M KOH electrolyte, respectively. The onset potential in 1 M KOH, 0.33 M Urea +1 M KOH, and 1 M Hz + 1 M KOH values are 1.528, 1.306, and 0.176 respectively. The Fe–Ni3S2/NF-2 shows stable performance at 10 mA cm−2 until 50 h and at 60 mA cm−2 over the 25 h. A cell of PtC//Fe–Ni3S2/NF-2 requires the potential of 0.49, 1.46, and 1.59 V for the hydrogen production in 1 M Hz + 1 M KOH, 0.33 M Urea +1 M KOH, and 1 M KOH electrolyte, respectively, at a current density of 10 mA cm−2, and almost 90% stable for the hydrogen production over the 80 h in all electrolytes. The improvement of the chemical kinetics of urea and hydrazine oxidation is due to the synergistic effect of the adsorption and fast electron transfer reaction on Fe–Ni3S2/NF-2. The doped Fe ion facilitates the fast electron transfer and the surface of Ni3S2 support to the urea and hydrazine molecule adsorption. © 2022 Hydrogen Energy Publications LLC -
dc.language English -
dc.publisher Pergamon Press Ltd. -
dc.title Self-supported iron-doped nickel sulfide as efficient catalyst for electrochemical urea and hydrazine oxidation reactions -
dc.type Article -
dc.identifier.doi 10.1016/j.ijhydene.2022.06.073 -
dc.identifier.scopusid 2-s2.0-85133666474 -
dc.identifier.bibliographicCitation International Journal of Hydrogen Energy, v.47, no.64, pp.27347 - 27357 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Electrocatalyst -
dc.subject.keywordAuthor Fe-doped Ni3S2 -
dc.subject.keywordAuthor Hydrazine -
dc.subject.keywordAuthor Hydrazine oxidation -
dc.subject.keywordAuthor Hydrogen boosting -
dc.subject.keywordAuthor Urea oxidation -
dc.subject.keywordPlus ELECTROLYTIC HYDROGEN-PRODUCTION -
dc.subject.keywordPlus OXIDE-BASED CATALYSTS -
dc.subject.keywordPlus BIFUNCTIONAL ELECTROCATALYST -
dc.subject.keywordPlus ENERGY-EFFICIENT -
dc.subject.keywordPlus EVOLUTION REACTION -
dc.subject.keywordPlus WATER-OXIDATION -
dc.subject.keywordPlus ALKALINE MEDIA -
dc.subject.keywordPlus FOAM -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus DESIGN -
dc.citation.endPage 27357 -
dc.citation.number 64 -
dc.citation.startPage 27347 -
dc.citation.title International Journal of Hydrogen Energy -
dc.citation.volume 47 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Advanced Energy Materials Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE