Detail View

Protic Ionic Liquids for Intrinsically Stretchable Conductive Polymers
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Protic Ionic Liquids for Intrinsically Stretchable Conductive Polymers
Issued Date
2023-01
Citation
Kim, Minji. (2023-01). Protic Ionic Liquids for Intrinsically Stretchable Conductive Polymers. ACS Applied Materials & Interfaces, 15(2), 3202–3213. doi: 10.1021/acsami.2c17376
Type
Article
Author Keywords
conductive polymerPEDOTPSSionic liquidion exchangestretchable electrode
Keywords
PARTICLE MESH EWALDMOLECULAR-DYNAMICSTHERMOELECTRIC PROPERTIESSOFT ACIDSFORCE-FIELDBASES HSABPEDOTPSSSTRAINFILMSHARD
ISSN
1944-8244
Abstract
Inspired by the classic hard-soft acid-base theory and intrigued by a theoretical prediction of spontaneous ion exchange between poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and hard-cation-soft-anion ionic liquid (IL), we treat PEDOT:PSS with a new IL composed of a protic (i.e., extremely hard) cation (3-methylimidazolium, p-MIM+) and an extremely soft anion (tetracyanoborate, TCB-). In fact, this protic IL (p-MIM:TCB) accomplishes the same levels of ion-exchange-mediated PEDOT-PSS separation, PEDOT-rich nanofibril formation, and electrical conductivity enhancement (∼2500 S/cm) as its aprotic counterpart (EMIM:TCB with 1-ethyl-3-methylimidazolium), the best IL used for this purpose so far. Furthermore, p-MIM:TCB significantly outperforms EMIM:TCB in terms of improving the stretchability (i.e., the highest tensile strain) of the PEDOT:PSS thin film. This enhancement is a result of the aromatic and protic cation p-MIM+, which acts as a molecular adhesive holding the exchanged ion pairs (PEDOT+:TCB- - -p-MIM+:PSS-) via ionic intercalation (at the surface of TCB-decorated PEDOT+ clusters) and hydrogen bonding (to PSS-), in which washing p-MIM+ out of the film degrades the stretchability while keeping the morphology. Our results offer molecular-level insight into the morphological, electrical, and mechanical properties of PEDOT:PSS and a molecular-interaction-based enhancement strategy that can be used for intrinsically stretchable conductive polymers. © 2022 American Chemical Society.
URI
http://hdl.handle.net/20.500.11750/17295
DOI
10.1021/acsami.2c17376
Publisher
American Chemical Society
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

장윤희
Jang, Yun Hee장윤희

Department of Energy Science and Engineering

read more

Total Views & Downloads