Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Ahn, Cheol Hyoun -
dc.contributor.author Yang, Won Seok -
dc.contributor.author Kim, Jeong Jae -
dc.contributor.author Kim, Jae Hyun -
dc.contributor.author Cho, Hyung Koun -
dc.date.accessioned 2023-01-05T10:40:10Z -
dc.date.available 2023-01-05T10:40:10Z -
dc.date.created 2022-10-12 -
dc.date.issued 2022-11 -
dc.identifier.issn 2366-9608 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17310 -
dc.description.abstract Dual-phasic (DP)-TiO2-based composites are considered attractive anode materials for high lithium-ion storage because of the synergetic contribution from dual-phases in lithium-ion storage. However, a comprehensive investigation on more efficient architectures and platforms is necessary to develop lithium-storage devices with high-rate capability and long-term stability. Herein, for the first time, a rationally designed bronze-rich DP-TiO2-embedded amorphous carbon nanoarchitecture, denoted as DP-TiO2@C, from sacrificial Ti-metal-organic frameworks (Ti-MOFs) via a two-step pyrolysis process is proposed. The bronze/anatase DP-TiO2@C nanocomposites are successfully synthesized using a unique pyrolysis process, which decomposes individually the metal clusters and organic linkers of Ti-MOFs. DP-TiO2@C exhibits a significantly high density and even distribution of nanoparticles (<5 nm), enabling the formation of numerous heterointerfaces. Remarkably, the bronze-rich DP-TiO2@C shows high specific capacities of 638 and 194 mAh g(-1) at current densities of 0.1 and 5 A g(-1), respectively, owing to the contribution of the synergetic interfacial structure. In addition, reversible specific capacities are observed at a high rate (5 A g(-1)) during 6000 cycles. Thus, this study presents a new approach for the synthesis of DP-TiO2@C nanocomposites from a sacrificial Ti-MOF and provides insights into the efficient control of the volume ratio in DP-TiO2 anode architecture. © 2022 Wiley-VCH GmbH. -
dc.language English -
dc.publisher Wiley -
dc.title Design of Bronze-Rich Dual-Phasic TiO2 Embedded Amorphous Carbon Nanocomposites Derived from Ti-Metal-Organic Frameworks for Improved Lithium-Ion Storage -
dc.type Article -
dc.identifier.doi 10.1002/smtd.202201066 -
dc.identifier.wosid 000857920800001 -
dc.identifier.scopusid 2-s2.0-85138298731 -
dc.identifier.bibliographicCitation Small Methods, v.6, no.11 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor bronze/anatase heterojunctions -
dc.subject.keywordAuthor dual-phasic TiO2 -
dc.subject.keywordAuthor interfacial storage -
dc.subject.keywordAuthor lithium-ion batteries -
dc.subject.keywordAuthor metal-organic frameworks -
dc.subject.keywordPlus ELECTROCHEMICAL ENERGY-STORAGE -
dc.subject.keywordPlus ANODE MATERIALS -
dc.subject.keywordPlus ANATASE TIO2 -
dc.subject.keywordPlus NANO-IONICS -
dc.subject.keywordPlus CYCLE LIFE -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus MIL-125 -
dc.subject.keywordPlus NANOWIRES -
dc.subject.keywordPlus CONVERSION -
dc.subject.keywordPlus STABILITY -
dc.citation.number 11 -
dc.citation.title Small Methods -
dc.citation.volume 6 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Energy & Environmental Technology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE