WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Hudson, Thomas | - |
| dc.contributor.author | Martirosian, Arthur | - |
| dc.contributor.author | Xie, Heng | - |
| dc.date.accessioned | 2023-01-06T19:40:11Z | - |
| dc.date.available | 2023-01-06T19:40:11Z | - |
| dc.date.created | 2022-09-23 | - |
| dc.date.issued | 2022-11 | - |
| dc.identifier.issn | 0024-6115 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/17327 | - |
| dc.description.abstract | We show that Witt groups of spinor varieties (aka. maximal isotropic Grassmannians) can be presented by combinatorial objects called 'even shifted young diagrams'. Our method relies on the Blow-up setup of Balmer-Calmes, and we investigate the connecting homomorphism of the localization sequence via the projective bundle formula of Walter-Nenashev, the projection formula of Calmes-Hornbostel and the excess intersection formula of Fasel. © 2022 The Authors. Proceedings of the London Mathematical Society is copyright © London Mathematical Society. | - |
| dc.language | English | - |
| dc.publisher | Wiley | - |
| dc.title | Witt groups of Spinor varieties | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1112/plms.12479 | - |
| dc.identifier.wosid | 000847544300001 | - |
| dc.identifier.scopusid | 2-s2.0-85137206017 | - |
| dc.identifier.bibliographicCitation | Hudson, Thomas. (2022-11). Witt groups of Spinor varieties. Proceedings of the London Mathematical Society, 125(5), 1152–1178. doi: 10.1112/plms.12479 | - |
| dc.description.isOpenAccess | TRUE | - |
| dc.subject.keywordPlus | HOMOTOPY-INVARIANCE | - |
| dc.subject.keywordPlus | FORMS | - |
| dc.subject.keywordPlus | THEOREM | - |
| dc.subject.keywordPlus | CURVES | - |
| dc.citation.endPage | 1178 | - |
| dc.citation.number | 5 | - |
| dc.citation.startPage | 1152 | - |
| dc.citation.title | Proceedings of the London Mathematical Society | - |
| dc.citation.volume | 125 | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.type.docType | Article | - |