Communities & Collections
Researchers & Labs
Titles
DGIST
LIBRARY
DGIST R&D
Detail View
Division of AI, Big data and Block chain
1. Journal Articles
Metal-Insulator Transition Detection of Vanadium Dioxide Thin Films by Visible Light Reflection
Allabergenov, Bunyod
;
Yun, Sanghun
;
Choi, Byeongdae
Division of AI, Big data and Block chain
1. Journal Articles
Citations
WEB OF SCIENCE
Citations
SCOPUS
Metadata Downloads
XML
Excel
Title
Metal-Insulator Transition Detection of Vanadium Dioxide Thin Films by Visible Light Reflection
Issued Date
2022-10
Citation
Allabergenov, Bunyod. (2022-10). Metal-Insulator Transition Detection of Vanadium Dioxide Thin Films by Visible Light Reflection. ACS Applied Materials & Interfaces, 14(42), 47841–47852. doi: 10.1021/acsami.2c11366
Type
Article
Author Keywords
direct current sputter
;
RGB reflection
;
thermochromic thin films
;
vanadium dioxide
;
phase transition
Keywords
PHASE-TRANSITION
;
VO2 FILMS
;
TEMPERATURE
;
XPS
ISSN
1944-8244
Abstract
Vanadium dioxide (VO2)-based thin films have received considerable attention in recent years due to their superior performance in creating next-generation color-rendering materials. The near-room-temperature metal-insulator transition of VO2 promises the advantage of active color tuning in the visible wavelength range. Although various results of dynamic color generation combined with plasmonic nanostructures are currently being investigated, so far, very few studies have addressed the visible-light optical performance of pure VO2 thin films prepared on conventional substrates. This article shows in detail the phase transition behavior of VO2 thin films in the visible wavelength range of 400-750 nm prepared on glass with subsequent annealing at temperatures of 350, 400, 450, and 500 degrees C. The results show an anomalous phase transition reducing the overall RGB reflectivity correlated with the crystallization behavior of the VO2 phase and scattering effect. The sample annealed at 350 degrees C shows the smallest phase transition at 47 degrees C, correlating with a crystallite size of 7 nm. The blue band reflectivity anomaly after annealing at 450 degrees C was considered an effect of the secondary reflection. The results of this research could play a huge role in the production of active switching photonic devices, color-managed reflectors, and temperature indicators. © 2022 American Chemical Society. All rights reserved.
URI
http://hdl.handle.net/20.500.11750/17328
DOI
10.1021/acsami.2c11366
Publisher
American Chemical Society
Show Full Item Record
File Downloads
There are no files associated with this item.
공유
공유하기
Related Researcher
Choi, Byeongdae
최병대
Division of AI, Big data and Block chain
read more
Total Views & Downloads