Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Dohun -
dc.contributor.author Kang, Byungmin -
dc.contributor.author Choi, Yong-Bin -
dc.contributor.author Watanabe, Kenji -
dc.contributor.author Taniguchi, Takashi -
dc.contributor.author Lee, Gil-Ho -
dc.contributor.author Cho, Gil Young -
dc.contributor.author Kim, Youngwook -
dc.date.accessioned 2023-01-10T12:10:10Z -
dc.date.available 2023-01-10T12:10:10Z -
dc.date.created 2023-01-10 -
dc.date.issued 2023-01 -
dc.identifier.issn 1530-6984 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17367 -
dc.description.abstract We introduce a novel two-dimensional electronic system with ultrastrong interlayer interactions, namely, twisted bilayer graphene with a large twist angle, as an ideal ground for realizing interlayer-coherent excitonic condensates. In these systems, sub-nanometer atomic separation between the layers allows significant interlayer interactions, while interlayer electron tunneling is geometrically suppressed due to the large twist angle. By fully exploiting these two features we demonstrate that a sequence of odd-integer quantum Hall states with interlayer coherence appears at the second Landau level (N = 1). Notably the energy gaps for these states are of order 1 K, which is several orders of magnitude greater than those in GaAs. Furthermore, a variety of quantum Hall phase transitions are observed experimentally. All the experimental observations are largely consistent with our phenomenological model calculations. Hence, we establish that a large twist angle system is an excellent platform for high-temperature excitonic condensation. © 2022 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Robust Interlayer-Coherent Quantum Hall States in Twisted Bilayer Graphene -
dc.type Article -
dc.identifier.doi 10.1021/acs.nanolett.2c03836 -
dc.identifier.wosid 000903340100001 -
dc.identifier.scopusid 2-s2.0-85144462677 -
dc.identifier.bibliographicCitation Nano Letters, v.23, no.1, pp.163 - 169 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Twisted Bilayer Graphene -
dc.subject.keywordAuthor Large Twist Angle -
dc.subject.keywordAuthor Bose−Einstein Condensation -
dc.subject.keywordAuthor Exciton Condensation -
dc.subject.keywordAuthor Quantum Hall Effect -
dc.subject.keywordAuthor Interlayer-Coherence -
dc.subject.keywordPlus FRACTIONAL CHERN INSULATORS -
dc.subject.keywordPlus CORRELATED STATES -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus TRANSITION -
dc.subject.keywordPlus SPIN -
dc.subject.keywordPlus FERROMAGNETISM -
dc.subject.keywordPlus REALIZATION -
dc.subject.keywordPlus PHASE -
dc.subject.keywordPlus QUANTUM HALL STATES -
dc.citation.endPage 169 -
dc.citation.number 1 -
dc.citation.startPage 163 -
dc.citation.title Nano Letters -
dc.citation.volume 23 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Topological Quantum Device Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE