Detail View

Distributed Boosting Classification over Noisy Communication Channels
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Distributed Boosting Classification over Noisy Communication Channels
Issued Date
2023-01
Citation
Kim, Yongjune. (2023-01). Distributed Boosting Classification over Noisy Communication Channels. IEEE Journal on Selected Areas in Communications, 41(1), 141–154. doi: 10.1109/JSAC.2022.3221972
Type
Article
Author Keywords
Distributed inferenceboostingtask-oriented communicationssemantic communicationscommunicationresource optimization
ISSN
0733-8716
Abstract
We address the design of inference-oriented communication systems where multiple transmitters send partial inference values through noisy communication channels, and the receiver aggregates these channel outputs to obtain a reliable final inference. Since large data items are replaced by compact inference values, these systems lead to significant savings of communication resources. In particular, we present a principled framework to optimize communication-resource allocation for distributed boosting classifiers. Boosting classification algorithms make a final decision via a weighted vote from the outputs of multiple base classifiers. Since these base classifiers transmit their partial inference values over noisy channels, communication errors would degrade the final classification accuracy. We formulate communication resource allocation problems to maximize the final classification accuracy by taking into account the importance of base classifiers and the resource budget. To solve these problems rigorously, we formulate convex optimization problems to optimize: 1) transmit-power allocations and 2) transmit-rate allocations. This framework departs from classical communication-systems optimizations in seeking to maximize the classification accuracy rather than the reliability of the individual communicated bits. Results from numerical experiments demonstrate the benefits of our approach. IEEE
URI
http://hdl.handle.net/20.500.11750/17404
DOI
10.1109/JSAC.2022.3221972
Publisher
Institute of Electrical and Electronics Engineers
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads