Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Frohna, Kyle -
dc.contributor.author Anaya, Miguel -
dc.contributor.author Macpherson, Stuart -
dc.contributor.author Sung, Jooyoung -
dc.contributor.author Doherty, Tiarnan A. S. -
dc.contributor.author Chiang, Yu-Hsien -
dc.contributor.author Winchester, Andrew J. -
dc.contributor.author Orr, Kieran W. P. -
dc.contributor.author Parker, Julia E. -
dc.contributor.author Quinn, Paul D. -
dc.contributor.author Dani, Keshav M. -
dc.contributor.author Rao, Akshay -
dc.contributor.author Stranks, Samuel D. -
dc.date.accessioned 2023-01-11T20:40:17Z -
dc.date.available 2023-01-11T20:40:17Z -
dc.date.created 2021-11-23 -
dc.date.issued 2022-02 -
dc.identifier.issn 1748-3387 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17405 -
dc.description.abstract Halide perovskites perform remarkably in optoelectronic devices. However, this exceptional performance is striking given that perovskites exhibit deep charge-carrier traps and spatial compositional and structural heterogeneity, all of which should be detrimental to performance. Here, we resolve this long-standing paradox by providing a global visualization of the nanoscale chemical, structural and optoelectronic landscape in halide perovskite devices, made possible through the development of a new suite of correlative, multimodal microscopy measurements combining quantitative optical spectroscopic techniques and synchrotron nanoprobe measurements. We show that compositional disorder dominates the optoelectronic response over a weaker influence of nanoscale strain variations even of large magnitude. Nanoscale compositional gradients drive carrier funnelling onto local regions associated with low electronic disorder, drawing carrier recombination away from trap clusters associated with electronic disorder and leading to high local photoluminescence quantum efficiency. These measurements reveal a global picture of the competitive nanoscale landscape, which endows enhanced defect tolerance in devices through spatial chemical disorder that outcompetes both electronic and structural disorder. © 2021, The Author(s), under exclusive licence to Springer Nature Limited. -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells -
dc.type Article -
dc.identifier.doi 10.1038/s41565-021-01019-7 -
dc.identifier.scopusid 2-s2.0-85119686895 -
dc.identifier.bibliographicCitation Nature Nanotechnology, v.17, no.2, pp.190 - 199 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus PHASE SEGREGATION -
dc.subject.keywordPlus LUMINESCENCE -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus LOSSES -
dc.subject.keywordPlus IMPACT -
dc.subject.keywordPlus LIMIT -
dc.citation.endPage 199 -
dc.citation.number 2 -
dc.citation.startPage 190 -
dc.citation.title Nature Nanotechnology -
dc.citation.volume 17 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry FemtoLab for Advanced Energy Materials 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE