WEB OF SCIENCE
SCOPUS
Designing super-broadband transparent conductors is challenging because of the exclusive nature of conductivity and infrared transmittance. Here, using a one-step process, we created vertically aligned nanocomposite conducting films with high transparency across a super-broad wavelength range. Vertically aligned transparent Ba3V2O8 nanocolumns with lateral ~100-nm widths enable high transmittance (>50%, even at a 4-μm wavelength) for all incident light and outperform that of Sn-doped In2O3, while the conducting SrVO3 matrix retains low resistivity (<0.56 mΩ cm at room temperature). A combined study of scanning transmission electron microscopy, scattering scanning near-field infrared microscopy, and X-ray diffraction revealed that spontaneous phase separation of Ba3V2O8 nanocolumns in a SrVO3 matrix film occurs via self-assembled epitaxial nucleation. Our vertically aligned nanocomposite films provide a fertile platform for next-generation optoelectronics. © 2022 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
더보기