Detail View

Classification of a Driver's cognitive workload levels using artificial neural network on ECG signals
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Tjolleng, Amir -
dc.contributor.author Jung, Kihyo -
dc.contributor.author Hong, Wongi -
dc.contributor.author Lee, Wonsup -
dc.contributor.author Lee, Baekhee -
dc.contributor.author You, Heecheon -
dc.contributor.author Son, Joonwoo -
dc.contributor.author Park, Seikwon -
dc.date.available 2017-06-29T08:06:26Z -
dc.date.created 2017-04-10 -
dc.date.issued 2017-03 -
dc.identifier.issn 0003-6870 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2040 -
dc.description.abstract An artificial neural network (ANN) model was developed in the present study to classify the level of a driver's cognitive workload based on electrocardiography (ECG). ECG signals were measured on 15 male participants while they performed a simulated driving task as a primary task with/without an N-back task as a secondary task. Three time-domain ECG measures (mean inter-beat interval (IBI), standard deviation of IBIs, and root mean squared difference of adjacent IBIs) and three frequencydomain ECG measures (power in low frequency, power in high frequency, and ratio of power in low and high frequencies) were calculated. To compensate for individual differences in heart response during the driving tasks, a three-step data processing procedure was performed to ECG signals of each participant: (1) selection of two most sensitive ECG measures, (2) definition of three (low, medium, and high) cognitive workload levels, and (3) normalization of the selected ECG measures. An ANN model was constructed using a feed-forward network and scaled conjugate gradient as a back-propagation learning rule. The accuracy of the ANN classification model was found satisfactory for learning data (95%) and testing data (82%). © 2016 Elsevier Ltd -
dc.language English -
dc.publisher Elsevier -
dc.title Classification of a Driver's cognitive workload levels using artificial neural network on ECG signals -
dc.type Article -
dc.identifier.doi 10.1016/j.apergo.2016.09.013 -
dc.identifier.wosid 000390642000036 -
dc.identifier.scopusid 2-s2.0-84989952763 -
dc.identifier.bibliographicCitation Applied Ergonomics, v.59, pp.326 - 332 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Cognitive workload classification -
dc.subject.keywordAuthor Heart rate variability -
dc.subject.keywordAuthor Artificial neural network -
dc.subject.keywordPlus Adult -
dc.subject.keywordPlus Age -
dc.subject.keywordPlus ALERTNESS -
dc.subject.keywordPlus Artificial Heart -
dc.subject.keywordPlus Artificial Neural Network -
dc.subject.keywordPlus Artificial Neural Network Models -
dc.subject.keywordPlus Automobile Driving -
dc.subject.keywordPlus Backpropagation -
dc.subject.keywordPlus Backpropagation Learning -
dc.subject.keywordPlus Biomedical Signal Processing -
dc.subject.keywordPlus Car Driving -
dc.subject.keywordPlus Classification -
dc.subject.keywordPlus Cognition -
dc.subject.keywordPlus Cognitive Workload Classification -
dc.subject.keywordPlus Cognitive Workloads -
dc.subject.keywordPlus Computer Simulation -
dc.subject.keywordPlus Data Handling -
dc.subject.keywordPlus DROWSINESS -
dc.subject.keywordPlus Electrocardiography -
dc.subject.keywordPlus FATIGUE -
dc.subject.keywordPlus HEART-RATE-VARIABILITY -
dc.subject.keywordPlus Heart Rate -
dc.subject.keywordPlus Heart Rate Variability -
dc.subject.keywordPlus Human -
dc.subject.keywordPlus Humans -
dc.subject.keywordPlus Individual Differences -
dc.subject.keywordPlus Low and High Frequencies -
dc.subject.keywordPlus Male -
dc.subject.keywordPlus Neural Networks -
dc.subject.keywordPlus Neural Networks (Computer) -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus Physiology -
dc.subject.keywordPlus Processing Procedures -
dc.subject.keywordPlus Psychology -
dc.subject.keywordPlus Scaled Conjugate Gradients -
dc.subject.keywordPlus SKIN TemPERATURE -
dc.subject.keywordPlus SLEEP -
dc.subject.keywordPlus Workload -
dc.subject.keywordPlus Young Adult -
dc.citation.endPage 332 -
dc.citation.startPage 326 -
dc.citation.title Applied Ergonomics -
dc.citation.volume 59 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass ssci -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Engineering; Psychology -
dc.relation.journalWebOfScienceCategory Engineering, Industrial; Ergonomics; Psychology, Applied -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

손준우
Son, Joonwoo손준우

Division of AI, Big data and Block chain

read more

Total Views & Downloads