Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lim, Byeonghwa -
dc.contributor.author Vavassori, Paolo -
dc.contributor.author Sooryakumar, R. -
dc.contributor.author Kim, CheolGi -
dc.date.available 2017-06-29T08:06:45Z -
dc.date.created 2017-04-10 -
dc.date.issued 2017-01-25 -
dc.identifier.issn 0022-3727 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2045 -
dc.description.abstract In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology. © 2016 IOP Publishing Ltd. -
dc.publisher Institute of Physics Publishing -
dc.title Nano/micro-scale magnetophoretic devices for biomedical applications -
dc.type Article -
dc.identifier.doi 10.1088/1361-6463/50/3/033002 -
dc.identifier.scopusid 2-s2.0-85012022702 -
dc.identifier.bibliographicCitation Journal of Physics D: Applied Physics, v.50, no.3 -
dc.subject.keywordAuthor cell sorting -
dc.subject.keywordAuthor magnetic domain walls -
dc.subject.keywordAuthor magnetophoresis -
dc.subject.keywordAuthor micro/nanopatterns -
dc.subject.keywordPlus Bioassay -
dc.subject.keywordPlus Biochips -
dc.subject.keywordPlus Biomedical Applications -
dc.subject.keywordPlus Cell Sorting -
dc.subject.keywordPlus DOMAIN-WALL CONDUITS -
dc.subject.keywordPlus Domain Walls -
dc.subject.keywordPlus ELECTROPORATION -
dc.subject.keywordPlus GENE TRANSFECTION -
dc.subject.keywordPlus Integrated Engineering -
dc.subject.keywordPlus LIVING CELLS -
dc.subject.keywordPlus Magnetic Domain Walls -
dc.subject.keywordPlus Magnetic Domains -
dc.subject.keywordPlus Magnetic Field Gradient -
dc.subject.keywordPlus MAGNETIC PARTICLE-TRANSPORT -
dc.subject.keywordPlus Magnetic Structure -
dc.subject.keywordPlus Magnetism -
dc.subject.keywordPlus MAGNETOPHORESIS -
dc.subject.keywordPlus Magnets -
dc.subject.keywordPlus Medical Applications -
dc.subject.keywordPlus Micro/Nanopatterns -
dc.subject.keywordPlus Microarrays -
dc.subject.keywordPlus Molecular Biology -
dc.subject.keywordPlus ON-CHIP MANIPULATION -
dc.subject.keywordPlus Remote Control -
dc.subject.keywordPlus Remote Manipulation -
dc.subject.keywordPlus Separation -
dc.subject.keywordPlus Single-Cell Analysis -
dc.subject.keywordPlus Single Cell Manipulation -
dc.subject.keywordPlus SUPERPARAMAGNETIC BEADS DRIVEN -
dc.subject.keywordPlus TWEEZERS -
dc.citation.number 3 -
dc.citation.title Journal of Physics D: Applied Physics -
dc.citation.volume 50 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Lab for NanoBio-Materials & SpinTronics(nBEST) 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE