Detail View

First-principles based computational study on nucleation and growth mechanisms of U on Mo(110) surface solvated in an eutectic LiCl-KCl molten salt
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kwon, Choah -
dc.contributor.author Kang, Joonhee -
dc.contributor.author Han, Byungchan -
dc.date.available 2017-07-05T08:36:05Z -
dc.date.created 2017-04-10 -
dc.date.issued 2016-08 -
dc.identifier.issn 0363-907X -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2230 -
dc.description.abstract We utilize first principles density functional theory (DFT) calculations and ab-initio molecular dynamic (AIMD) simulations to identify underlying mechanisms elucidating the initial stage of electrocrystallization process of U on Mo(110) surface in a eutectic LiCl–KCl molten salt at T = 773 K. Our results clearly unveil surprisingly different principles on the nucleation of U in the media from that under vacuum conditions. U nanoclusters exposed to vacuum completely collapse into flat atomic layers on Mo(110) surface similar to an electrodeposition process. On the other hand, Cl ions in eutectic molten salt thermodynamically drive crystallite formation consisting of UCln(n = 3–6) through agglomeration of U atoms. Those crystallite gradually grows into bigger nuclei by adsorbing on Mo(110) surface. We propose that those behaviors are understandable only with revised conventional theories and that atomic level interactions among U, LiCl–KCl molten salt and Mo(110) surface play a key role to describe the atomic-scale dendrite formation of U in the electrorefining process. Our study can be one of the basic steps to design efficient electrorefining systems by identifying the fundamental cause of the experimentally observed uranium nucleation phenomena. © 2016 John Wiley & Sons, Ltd. -
dc.publisher John Wiley and Sons -
dc.title First-principles based computational study on nucleation and growth mechanisms of U on Mo(110) surface solvated in an eutectic LiCl-KCl molten salt -
dc.type Article -
dc.identifier.doi 10.1002/er.3527 -
dc.identifier.scopusid 2-s2.0-84962468725 -
dc.identifier.bibliographicCitation Kwon, Choah. (2016-08). First-principles based computational study on nucleation and growth mechanisms of U on Mo(110) surface solvated in an eutectic LiCl-KCl molten salt. International Journal of Energy Research, 40(10), 1381–1388. doi: 10.1002/er.3527 -
dc.subject.keywordAuthor first principle calculations -
dc.subject.keywordAuthor density functional theory -
dc.subject.keywordAuthor molecular dynamics -
dc.subject.keywordAuthor electrorefining -
dc.subject.keywordAuthor nucleation and growth -
dc.subject.keywordPlus Ab Initio Molecular Dynamics -
dc.subject.keywordPlus Atomic-Level Interactions -
dc.subject.keywordPlus Atoms -
dc.subject.keywordPlus Batteries -
dc.subject.keywordPlus Calculations -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus Computation Theory -
dc.subject.keywordPlus Copyrights -
dc.subject.keywordPlus Crystal Growth -
dc.subject.keywordPlus Crystallites -
dc.subject.keywordPlus Density Functional Theory -
dc.subject.keywordPlus Design For Testability -
dc.subject.keywordPlus ELECTROCHemICAL NUCLEATION -
dc.subject.keywordPlus Electrocrystallization Process -
dc.subject.keywordPlus Electrodeposition -
dc.subject.keywordPlus Electrodeposition Process -
dc.subject.keywordPlus Electrorefining -
dc.subject.keywordPlus ENERGY -
dc.subject.keywordPlus Eutectics -
dc.subject.keywordPlus First Principle Calculations -
dc.subject.keywordPlus First Principles Density Functional Theory (DFT) Calculations -
dc.subject.keywordPlus FUEL-CELLS -
dc.subject.keywordPlus Fused Salts -
dc.subject.keywordPlus Ionic Liquids -
dc.subject.keywordPlus Molecular Dynamics -
dc.subject.keywordPlus Molybdenum -
dc.subject.keywordPlus Nucleation -
dc.subject.keywordPlus Nucleation and Growth -
dc.subject.keywordPlus SYSTem -
dc.subject.keywordPlus TRANSURANIC ELemENTS -
dc.subject.keywordPlus Uranium -
dc.citation.endPage 1388 -
dc.citation.number 10 -
dc.citation.startPage 1381 -
dc.citation.title International Journal of Energy Research -
dc.citation.volume 40 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads