Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Hu, Xinghao -
dc.contributor.author Torati, Sri Ramulu -
dc.contributor.author Shawl, Asif Iqbal -
dc.contributor.author Lim, Byeonghwa -
dc.contributor.author Kim, Kunwoo -
dc.contributor.author Kim, CheolGi -
dc.date.available 2017-07-11T05:39:34Z -
dc.date.created 2017-04-10 -
dc.date.issued 2016 -
dc.identifier.issn 1949-307X -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2776 -
dc.description.abstract We demonstrate a separation method for complex mixture of superparamagnetic beads using half-disk pathways, under an in-plane rotating magnetic field, which is highly sensitive to the bead size and magnetic susceptibility. The non-linear dynamics of the beads moving along the half-disk pathways at multiple frequencies can be divided into three regimes: a phase-locked regime at low driving frequencies, a phase-slipping regime above the first critical frequency fc1, and a phase-insulated regime above the second critical frequency fc2 in which the beads just hop at the gaps between two half-disks. Hence, based on the dynamical motions, the beads with varied sizes or heterogenic magnetic properties can be separated efficiently. Furthermore, a bio-selective separation of bead plus human monocytic leukemia (THP-1) cell complexes from bare beads has been achieved due to the increased drag force on the complexes, resulting in a decreased critical frequency. © 2010-2012 IEEE. -
dc.publisher Institute of Electrical and Electronics Engineers Inc. -
dc.title Micromagnet Conductors for High-Resolution Separation of Magnetically Driven Beads and Cells at Multiple Frequencies -
dc.type Article -
dc.identifier.doi 10.1109/LMAG.2016.2614253 -
dc.identifier.scopusid 2-s2.0-85012918313 -
dc.identifier.bibliographicCitation IEEE Magnetics Letters, v.7 -
dc.subject.keywordAuthor Biomagnetics -
dc.subject.keywordAuthor in-plane rotating field -
dc.subject.keywordAuthor superparamagnetic beads -
dc.subject.keywordAuthor cells -
dc.subject.keywordAuthor separation -
dc.subject.keywordAuthor multi-frequencies -
dc.subject.keywordPlus ARRAYS -
dc.subject.keywordPlus Biomagnetics -
dc.subject.keywordPlus CELLS -
dc.subject.keywordPlus Critical Frequencies -
dc.subject.keywordPlus Drag -
dc.subject.keywordPlus High-Resolution Separations -
dc.subject.keywordPlus In-Plane Rotating Field -
dc.subject.keywordPlus Magnetic Susceptibility -
dc.subject.keywordPlus Magnetism -
dc.subject.keywordPlus MAGNETOPHORESIS -
dc.subject.keywordPlus MANIPULATION -
dc.subject.keywordPlus Multi-Frequencies -
dc.subject.keywordPlus Multi Frequency -
dc.subject.keywordPlus PARTICLES -
dc.subject.keywordPlus PATHWAY -
dc.subject.keywordPlus Rotating Disks -
dc.subject.keywordPlus Rotating Fields -
dc.subject.keywordPlus Rotating Magnetic Fields -
dc.subject.keywordPlus Selective Separation -
dc.subject.keywordPlus Separation -
dc.subject.keywordPlus Superparamagnetic Beads -
dc.subject.keywordPlus Superparamagnetism -
dc.subject.keywordPlus TWEEZERS -
dc.citation.title IEEE Magnetics Letters -
dc.citation.volume 7 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Lab for NanoBio-Materials & SpinTronics(nBEST) 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE