Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Jeong, Hye Won -
dc.contributor.author Chae, Weon-Sik -
dc.contributor.author Song, Bokyung -
dc.contributor.author Cho, Chang-Hee -
dc.contributor.author Baek, Seong-Ho -
dc.contributor.author Park, Yiseul -
dc.contributor.author Park, Hyunwoong -
dc.date.available 2017-07-11T05:41:45Z -
dc.date.created 2017-04-10 -
dc.date.issued 2016-06 -
dc.identifier.issn 1754-5692 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2788 -
dc.description.abstract One- to three-dimensional alignments of semiconductors on the micro- or nanoscale have been achieved to tailor their opto-physicochemical properties and improve their photoelectrochemical (PEC) performance. Here, to the best of our knowledge, we report for the first time the fabrication of vertically aligned, well-ordered WO3 microdisc arrays via an electrodeposition process on lithographically patterned indium tin oxide (ITO) substrates as well as their geometry-specific photoelectrochemical properties. The as-fabricated WO3 microdisc arrays exhibit enhanced light absorption as well as facilitated charge separation, leading to significantly higher PEC performance than WO3 films. A finite-difference time-domain simulation of a single WO3 microdisc indicates that strong optical resonances occur particularly in the central part of the microdisc, leading to enhanced optical absorption. A time-resolved photoluminescence study further reveals that the average lifetime of charge carriers (τ) in a microdisc array is shorter than that in a film by ∼60%. The reductively deposited Au particles are localized on the side of the microdisc and ITO substrate, which suggests that the photogenerated electrons are transferred to the same location. In addition, the oxidative deposition of FeOOH particles on the top surface and side of a microdisc indicates hole transfer pathways at the same location. This downward transfer of electrons and upward transfer of holes lead to efficient charge separation, and the radial direction appears to be the most preferred shortcut for the carriers inside the bulk of a microdisc. © 2016 The Royal Society of Chemistry. -
dc.language English -
dc.publisher Royal Society of Chemistry -
dc.title Optical resonance and charge transfer behavior of patterned WO3 microdisc arrays -
dc.type Article -
dc.identifier.doi 10.1039/c6ee01003b -
dc.identifier.scopusid 2-s2.0-84991017484 -
dc.identifier.bibliographicCitation Energy & Environmental Science, v.9, no.10, pp.3143 - 3150 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus Photoelectrochemical Cells -
dc.subject.keywordPlus Photoelectrochemical Properties -
dc.subject.keywordPlus PHOTOELECTROCHemICAL WATER OXIDATION -
dc.subject.keywordPlus Physicochemical Property -
dc.subject.keywordPlus Quantum Optics -
dc.subject.keywordPlus Resonance -
dc.subject.keywordPlus Resonators -
dc.subject.keywordPlus Substrates -
dc.subject.keywordPlus THIN-FILMS -
dc.subject.keywordPlus Three-Dimensional Alignments -
dc.subject.keywordPlus Time-Resolved Photoluminescence -
dc.subject.keywordPlus Time Domain Analysis -
dc.subject.keywordPlus Tin Oxides -
dc.subject.keywordPlus TiO2 -
dc.subject.keywordPlus TUNGSTEN-OXIDE -
dc.subject.keywordPlus VISIBLE-LIGHT -
dc.subject.keywordPlus BiVO4 -
dc.subject.keywordPlus Charge Transfer -
dc.subject.keywordPlus Conversion Efficiency -
dc.subject.keywordPlus CRYSTAL FACET -
dc.subject.keywordPlus Electrochemistry -
dc.subject.keywordPlus Electrodeposition Process -
dc.subject.keywordPlus Electrodes -
dc.subject.keywordPlus Electromagnetic Wave Absorption -
dc.subject.keywordPlus Enhanced Light Absorptions -
dc.subject.keywordPlus Finite Difference Time Domain Method -
dc.subject.keywordPlus Finite Difference Time Domain Simulations -
dc.subject.keywordPlus Gold Deposits -
dc.subject.keywordPlus Indium Tin Oxide Substrates -
dc.subject.keywordPlus Light Absorption -
dc.subject.keywordPlus Light emission -
dc.subject.keywordPlus PHOTOANODES -
dc.citation.endPage 3150 -
dc.citation.number 10 -
dc.citation.startPage 3143 -
dc.citation.title Energy & Environmental Science -
dc.citation.volume 9 -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE