Communities & Collections
Researchers & Labs
Titles
DGIST
LIBRARY
DGIST R&D
Detail View
ETC
1. Journal Articles
Magnetic coupling of vortices in a two-dimensional lattice
Nissen, D.
;
Mitin, D.
;
Klein, O.
;
Arekapudi, S. S. P. K.
;
Thomas, S.
;
Im, M-Y
;
Fischer, P.
;
Albrecht, M.
ETC
1. Journal Articles
Citations
WEB OF SCIENCE
Citations
SCOPUS
Metadata Downloads
XML
Excel
Title
Magnetic coupling of vortices in a two-dimensional lattice
Issued Date
2015-11
Citation
Nanotechnology, v.26, no.46
Type
Article
Author Keywords
magnetic vortex
;
magnetization reversal
;
magnetic exchange coupling
Keywords
ARRAY
;
Aspect Ratio
;
Closely Packed Structures
;
Connected Domains
;
DISKS
;
Domain-Wall Propagation
;
DOTS
;
Exchange Coupling
;
Excitation
;
FIELD
;
GYRATION
;
Magnetic Couplings
;
Magnetic Domains
;
Magnetic Exchange Coupling
;
Magnetic Vortex
;
Magnetic Vortices
;
Magnetism
;
Magnetization
;
Magnetization Reversal
;
Nickel Alloys
;
Nucleation
;
Nucleation Process
;
PERMALLOY
;
Soft X-Ray Microscopy
;
Two-Dimensional Lattices
;
VORTEX CORE REVERSAL
;
Vortex Flow
ISSN
0957-4484
Abstract
We investigated the magnetization reversal of magnetic vortex structures in a two-dimensional lattice. The structures were formed by permalloy (Py) film deposition onto large arrays of self-assembled spherical SiO2-particles with a diameter of 330 nm. We present the dependence of the nucleation and annihilation field of the vortex structures as a function of the Py layer thickness (aspect ratio) and temperature. By increasing the Py thickness up to 90 nm or alternatively by lowering the temperature the vortex structure becomes more stable as expected. However, the increase of the Py thickness results in the onset of strong exchange coupling between neighboring Py caps due to the emergence of Py bridges connecting them. In particular, we studied the influence of magnetic coupling locally by in-field scanning magneto-resistive microscopy and full-field magnetic soft x-ray microscopy, revealing a domain-like nucleation process of vortex states, which arises via domain wall propagation due to exchange coupling of the closely packed structures. By analyzing the rotation sense of the reversed areas, large connected domains are present with the same circulation sense. Furthermore, the lateral core displacements when an in-plane field is applied were investigated, revealing spatially enlarged vortex cores and a broader distribution with increasing Py layer thickness. In addition, the presence of some mixed states, vortices and c-states, is indicated for the array with the thickest Py layer. © 2015 IOP Publishing Ltd.
URI
http://hdl.handle.net/20.500.11750/2812
DOI
10.1088/0957-4484/26/46/465706
Publisher
Institute of Physics Publishing
Show Full Item Record
File Downloads
There are no files associated with this item.
공유
공유하기
Total Views & Downloads