WEB OF SCIENCE
SCOPUS
We report the electrochemical performance of carbon-coated TiO2 nanobarbed fibers (TiO2@C NBFs) as anode material for lithium-ion batteries. The TiO2@C NBFs are composed of TiO2 nanorods grown on TiO2 nanofibers as a core, coated with a carbon shell. These nanostructures form a conductive network showing high capacity and C-rate performance due to fast lithium-ion diffusion and effective electron transfer. The TiO2@C NBFs show a specific reversible capacity of approximately 170 mAh g- 1 after 200 cycles at a 0.5 A g- 1 current density, and exhibit a discharge rate capability of 4 A g- 1 while retaining a capacity of about 70 mAh g- 1. The uniformly coated amorphous carbon layer plays an important role to improve the electrical conductivity during the lithiation-delithiation process. © 2015 Elsevier B.V.
더보기