Detail View

Joint optimisation of computational accuracy and algorithm parameters for energy-efficient recognition algorithms
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Lim, Heesung -
dc.contributor.author Park, Taejoon -
dc.contributor.author Kim, Nam Sung -
dc.date.available 2017-07-11T05:48:07Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-08 -
dc.identifier.issn 0013-5194 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2867 -
dc.description.abstract In this reported work, firstly, the artificial neural network (ANN) is taken as a target recognition algorithm and then jointly, the computational accuracy and an algorithm parameter (i.e. the number of hidden nodes) are optimised to minimise the overall energy consumption of ANN evaluations. This joint optimisation is motivated by the observation that both the computational accuracy and the algorithm parameter affect recognition accuracy and energy consumption. The evaluation shows that the jointly optimised computational accuracy and the algorithm parameter reduces the energy consumption of ANN evaluations by 79% at the same recognition target, compared with optimising only the algorithm parameter with precise computations. Furthermore, it is demonstrated that to evaluating ANNs with reduced computational accuracy, recognition accuracy is further improved by training the ANNs with reduced computational accuracy. This allows reduction of energy consumption by 86%. © The Institution of Engineering and Technology 2015. -
dc.language English -
dc.publisher Institution of Engineering and Technology -
dc.title Joint optimisation of computational accuracy and algorithm parameters for energy-efficient recognition algorithms -
dc.type Article -
dc.identifier.doi 10.1049/el.2015.0013 -
dc.identifier.wosid 000359811900012 -
dc.identifier.scopusid 2-s2.0-84938632517 -
dc.identifier.bibliographicCitation Electronics Letters, v.51, no.16, pp.1238 - 1239 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus Algorithm Parameters -
dc.subject.keywordPlus Algorithms -
dc.subject.keywordPlus Computational Accuracy -
dc.subject.keywordPlus Computational Efficiency -
dc.subject.keywordPlus Affect Recognition -
dc.subject.keywordPlus Energy Efficiency -
dc.subject.keywordPlus Energy Efficient -
dc.subject.keywordPlus Energy Utilization -
dc.subject.keywordPlus Neural Networks -
dc.subject.keywordPlus Optimisations -
dc.subject.keywordPlus Parameter Estimation -
dc.subject.keywordPlus Recognition Accuracy -
dc.subject.keywordPlus Recognition Algorithm -
dc.subject.keywordPlus Target Recognition Algorithms -
dc.citation.endPage 1239 -
dc.citation.number 16 -
dc.citation.startPage 1238 -
dc.citation.title Electronics Letters -
dc.citation.volume 51 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Engineering -
dc.relation.journalWebOfScienceCategory Engineering, Electrical & Electronic -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads