Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Jongmin -
dc.contributor.author Yun, Won Seok -
dc.contributor.author Lee, J. D. -
dc.date.available 2017-07-11T05:57:27Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-06 -
dc.identifier.issn 1932-7447 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2889 -
dc.description.abstract We carry out first-principles calculations of the quasi-particle band structure and optical absorption spectra of H-passivated armchair MoS2 nanoribbons (AMoS2NRs) by employing the approach combining the Green's function perturbation theory (GW) and the Bethe-Salpeter equation (BSE), i.e., GW+BSE. Optical absorption spectra of AMoS2NRs show the exciton multibands (their binding energies are close to or less than 1 eV) which are much stronger than a single layer of MoS2. However, they are absent in the spectra by the approach of GW and the random phase approximation (RPA), i.e., GW+RPA. This signifies that the excitonic correlation effects are strongly enhanced in the reduced dimensional structure of MoS2. We also calculate the exciton wave functions for the few lowest energy excitons, which are found to have non-Frenkel character. © 2015 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Optical Absorption of Armchair MoS2 Nanoribbons: Enhanced Correlation Effects in the Reduced Dimension -
dc.type Article -
dc.identifier.doi 10.1021/acs.jpcc.5b02232 -
dc.identifier.scopusid 2-s2.0-84935022349 -
dc.identifier.bibliographicCitation Journal of Physical Chemistry C, v.119, no.24, pp.13901 - 13906 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus Approximation Algorithms -
dc.subject.keywordPlus Bethe-Salpeter Equation -
dc.subject.keywordPlus Binding Energy -
dc.subject.keywordPlus Calculations -
dc.subject.keywordPlus Correlation Detectors -
dc.subject.keywordPlus Correlation Effect -
dc.subject.keywordPlus ELECTRIC-FIELD -
dc.subject.keywordPlus Electromagnetic Wave Absorption -
dc.subject.keywordPlus EXCITATIONS -
dc.subject.keywordPlus Excitons -
dc.subject.keywordPlus First-Principles Calculation -
dc.subject.keywordPlus GRAPHENE NANORIBBONS -
dc.subject.keywordPlus Light Absorption -
dc.subject.keywordPlus Magnetism -
dc.subject.keywordPlus Molybdenum Compounds -
dc.subject.keywordPlus MONOLAYER MOS2 -
dc.subject.keywordPlus Nanoribbons -
dc.subject.keywordPlus Optical Correlation -
dc.subject.keywordPlus Optical Materials -
dc.subject.keywordPlus Perturbation Techniques -
dc.subject.keywordPlus Perturbation Theory -
dc.subject.keywordPlus PHOTOLUMINESCENCE -
dc.subject.keywordPlus Quasi Particles -
dc.subject.keywordPlus Random Phase Approximations -
dc.subject.keywordPlus Reduced-Dimensional -
dc.subject.keywordPlus SINGLE-LAYER MOS2 -
dc.subject.keywordPlus Single Layer -
dc.subject.keywordPlus SPECTRA -
dc.subject.keywordPlus Unmanned Aerial Vehicles (UAV) -
dc.subject.keywordPlus VALLEY POLARIZATION -
dc.subject.keywordPlus Wave Functions -
dc.citation.endPage 13906 -
dc.citation.number 24 -
dc.citation.startPage 13901 -
dc.citation.title Journal of Physical Chemistry C -
dc.citation.volume 119 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Light and Matter Theory Laboratory 1. Journal Articles
Division of Nanotechnology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE