WEB OF SCIENCE
SCOPUS
Carbon-coated Fe3O4 hollow nanofibers (Fe3O4/C hNFs) as a lithium ion battery anode material are prepared through electrospinning, annealing, and hydrothermal processing. At a high current density of 1000 mAg-1, the template-free Fe3O4/C hNFs exhibit high 1st- and 150th-cycle specific capacities of ∼963 and 978 mAhg-1, respectively. Moreover, Fe3O4/C hNFs have excellent and stable rate capability, compared to that of the Fe3O4 hNFs, and a capacity of 704 mAhg-1 at a current density of 2000 mAg-1. Owing to the carbon layer, the Li-ion diffusion coefficient of the Fe3O4/C hNFs, 8.10 × 10-14 cm2 s-1, is 60 times higher than that (1.33 × 10-15 cm2 s-1) of the Fe3O4 hNFs. These results indicate that Fe3O4/C hNFs may have important implications for developing high performance anodes for next-generation lithium ion batteries. © 2015 Elsevier B.V. All rights reserved.
더보기