WEB OF SCIENCE
SCOPUS
In this study, the effects of the polyvinylidene fluoride (PVdF) binder on the Mn dissolution behavior and electrochemical performances of LiMninf2/infOinf4/inf (LMO) electrodes are investigated. It is found that increasing the PVdF content (3, 5, 7, and 10 wt.%) leads to reduced Mn dissolution, and thus superior cycle performance at elevated temperature (60 °C). This can be ascribed to increased binder coverage on the LMO surface, as evidenced by X-ray photoelectron spectroscopy measurements, which acts a role as a passivation layer for Mn dissolution. The rate capability of the LMO electrode is hardly deteriorated as the PVdF content increases, despite the increasing surface coverage. Electrochemical impedance measurements reveal that the LMO electrode with higher binder loading exhibits lower electrode impedance, which is suggested to be due to enhanced electronic passage through the composite LMO electrode. © 2015 Elsevier B.V.
더보기