Detail View

Improved Vehicle Detection Algorithm in Heavy Traffic for Intelligent Vehicle
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Lee, Chung-Hee -
dc.contributor.author Lim, Young-Chul -
dc.contributor.author Kim, Dongyoung -
dc.contributor.author Sohng, Kyu-Ik -
dc.date.available 2017-07-11T06:29:03Z -
dc.date.created 2017-04-10 -
dc.date.issued 2014-11 -
dc.identifier.issn 1392-1215 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/3147 -
dc.description.abstract Despite significant progress in vehicle detection over the last few decades, vehicle detection performance in heavy traffic is still inadequate. In this paper, we propose a new algorithm for vehicle detection in heavy traffic to improve detection performance. It uses two proposed segmentation methods, namely, the disparity map-based bird's-eye-view mapping segmentation method and the edge distance weighted conditional random field (CRF)-based segmentation method. Our experimental results show that the proposed algorithm outperforms conventional algorithms. The improvements in performance range from 10.8 % to 20.5 % increase in F-measure. -
dc.language English -
dc.publisher Kauno Technologijos Universitetas -
dc.title Improved Vehicle Detection Algorithm in Heavy Traffic for Intelligent Vehicle -
dc.type Article -
dc.identifier.doi 10.5755/j01.eee.20.9.3734 -
dc.identifier.wosid 000345356800011 -
dc.identifier.scopusid 2-s2.0-84911437121 -
dc.identifier.bibliographicCitation Lee, Chung-Hee. (2014-11). Improved Vehicle Detection Algorithm in Heavy Traffic for Intelligent Vehicle. Elektronika ir Elektrotechnika, 20(9), 54–58. doi: 10.5755/j01.eee.20.9.3734 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Intelligent vehicle -
dc.subject.keywordAuthor image segmentation -
dc.subject.keywordAuthor object recognition -
dc.subject.keywordAuthor stereo image processing -
dc.citation.endPage 58 -
dc.citation.number 9 -
dc.citation.startPage 54 -
dc.citation.title Elektronika ir Elektrotechnika -
dc.citation.volume 20 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Engineering -
dc.relation.journalWebOfScienceCategory Engineering, Electrical & Electronic -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이충희
Lee, Chung-Hee이충희

Division of AI, Big data and Block chain

read more

Total Views & Downloads