Detail View

Intrinsic parameter extraction of a-InGaZnO thin-film transistors by a gated-four-probe method
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Jeong, Jae Wook -
dc.contributor.author Kim, Joonwoo -
dc.contributor.author Lee, Gwang Jun -
dc.contributor.author Choi, Byeongdae -
dc.date.available 2017-07-11T06:57:08Z -
dc.date.created 2017-04-10 -
dc.date.issued 2012-01 -
dc.identifier.issn 0003-6951 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/3391 -
dc.description.abstract We analyzed the intrinsic electrical characteristics of amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) using a gated-four-probe method. Based on the back channel potential, the extraction of intrinsic field-effect mobility (μ FEi) and parasitic resistance in source (R s) and drain (R d) electrodes was performed especially for low V GS and V DS conditions. The resulting μ FEi showed typical V GS dependency of amorphous semiconductor TFTs. However, R s and R d showed that there can be non-uniformity in source/drain parasitic resistance, which indicates that a separate analysis of the parameters of each electrode is essential for further improvement of the performance of a-IGZO TFTs. © 2012 American Institute of Physics. -
dc.language English -
dc.publisher American Institute of Physics -
dc.title Intrinsic parameter extraction of a-InGaZnO thin-film transistors by a gated-four-probe method -
dc.type Article -
dc.identifier.doi 10.1063/1.3675876 -
dc.identifier.wosid 000299126800086 -
dc.identifier.scopusid 2-s2.0-84862909074 -
dc.identifier.bibliographicCitation Jeong, Jae Wook. (2012-01). Intrinsic parameter extraction of a-InGaZnO thin-film transistors by a gated-four-probe method. Applied Physics Letters, 100(2). doi: 10.1063/1.3675876 -
dc.description.isOpenAccess FALSE -
dc.citation.number 2 -
dc.citation.title Applied Physics Letters -
dc.citation.volume 100 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Physics -
dc.relation.journalWebOfScienceCategory Physics, Applied -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

최병대
Choi, Byeongdae최병대

Division of AI, Big data and Block chain

read more

Total Views & Downloads