Detail View

Biologically motivated incremental object perception based on selective attention
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Won, Woong Jae -
dc.contributor.author Yeo, Jiyoung -
dc.contributor.author Ban, Sang-Woo -
dc.contributor.author Lee, Minho -
dc.date.available 2017-07-11T07:18:43Z -
dc.date.created 2017-04-10 -
dc.date.issued 2007-12 -
dc.identifier.citation International Journal of Pattern Recognition and Artificial Intelligence, v.21, no.8, pp.1293 - 1305 -
dc.identifier.issn 0218-0014 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/3584 -
dc.description.abstract In this paper, we propose an object selective attention and perception system, which was implemented by integrating a specific object preferable attention model with an incremental object perception model. The object oriented attention model can selectively pay attention to the candidates of an object in natural scenes based on a bottom-up selective attention model in conjunction with a top-down biased attention mechanism for a specific object. A generative model based on an incremental Bayesian parameter estimation is considered in order to perceive arbitrary objects in the attended areas. Combining an object oriented attention model with general object perception model, the developed system cannot only pay attention to a specific target object but can also memorize the characteristics of task nonspecific objects in an incremental manner. Experimental results show that the developed system generates good performance in successfully focusing on the target objects as well as incrementally perceiving objects in natural scenes. © World Scientific Publishing Company. -
dc.language English -
dc.publisher World Scientific Publishing Co -
dc.title Biologically motivated incremental object perception based on selective attention -
dc.type Article -
dc.identifier.doi 10.1142/S021800140700596X -
dc.identifier.wosid 000253298200005 -
dc.identifier.scopusid 2-s2.0-38149028317 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.identifier.bibliographicCitation Won, Woong Jae. (2007-12). Biologically motivated incremental object perception based on selective attention. doi: 10.1142/S021800140700596X -
dc.description.journalClass 1 -
dc.citation.publicationname International Journal of Pattern Recognition and Artificial Intelligence -
dc.contributor.nonIdAuthor Won, Woong Jae -
dc.contributor.nonIdAuthor Yeo, Jiyoung -
dc.contributor.nonIdAuthor Ban, Sang-Woo -
dc.contributor.nonIdAuthor Lee, Minho -
dc.identifier.citationVolume 21 -
dc.identifier.citationNumber 8 -
dc.identifier.citationStartPage 1293 -
dc.identifier.citationEndPage 1305 -
dc.identifier.citationTitle International Journal of Pattern Recognition and Artificial Intelligence -
dc.type.journalArticle Article; Proceedings Paper -
dc.description.isOpenAccess N -
dc.subject.keywordAuthor incremental object perception -
dc.subject.keywordAuthor object oriented attention model -
dc.subject.keywordAuthor top-down biased attention -
dc.subject.keywordPlus Bayesian Networks -
dc.subject.keywordPlus Incremental Object Perception -
dc.subject.keywordPlus Incremental Object Perception -
dc.subject.keywordPlus Mathematical Models -
dc.subject.keywordPlus Natural Scenes -
dc.subject.keywordPlus NETWORK -
dc.subject.keywordPlus Object Oriented Attention Model -
dc.subject.keywordPlus Object Oriented Attention Model -
dc.subject.keywordPlus Object Oriented Programming -
dc.subject.keywordPlus Object Recognition -
dc.subject.keywordPlus Parameter Estimation -
dc.subject.keywordPlus Perception System -
dc.subject.keywordPlus RECOGNITION -
dc.subject.keywordPlus Top-Down Biased Attention -
dc.subject.keywordPlus Top-Down Biased Attention -
dc.contributor.affiliatedAuthor Won, Woong Jae -
dc.contributor.affiliatedAuthor Yeo, Jiyoung -
dc.contributor.affiliatedAuthor Ban, Sang-Woo -
dc.contributor.affiliatedAuthor Lee, Minho -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads