Detail View

조직 병리학 분류를 위한 다중 인스턴스 학습 방법
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Philip Chikontwe -
dc.contributor.author 박상현 -
dc.date.accessioned 2023-03-22T18:10:21Z -
dc.date.available 2023-03-22T18:10:21Z -
dc.identifier.uri http://hdl.handle.net/20.500.11750/45648 -
dc.description.abstract 본 발명은 조직 병리학 분류를 위한 다중 인스턴스 학습 방법에 관한 것으로, 컴퓨팅 장치 또는 컴퓨팅 네트워크에서 적어도 하나의 프로세서에 의해 수행되는 조직 병리학 분류를 위한 다중 인스턴스 학습 방법으로서, 특징 추출 모델(Fθ(ㆍ))을 실행하여 i번째 슬라이드 유래 인스턴스(pij)를 저차원 임베딩(low dimensional embedding, gij)으로 변환하고, 이진 분류기를 이용하여 인스턴스(pij)의 양성성을 확인 후, 모든 모음(bags)의 인스턴스 레벨 확률(instance level probabilities)을 분류하여 학습을 위한 슬라이드당 최상위 인스턴스를 샘플링하는 인스턴스 선택 단계와, 상기 인스턴스 선택 단계에서 얻어진 인스턴스들을 이용하여 학습하되, 인스턴스 레벨 학습과 모음 레벨 학습을 순차 수행하여 최종 로스를 구하는 학습단계와, 두 점 사이의 유사도를 검출하는 커널을 이용하여 모음 레벨 임베딩(zi)을 학습된 중심(learned centroid)에 분배하는 소프트 할당 기반 추론 단계를 포함할 수 있다. -
dc.title 조직 병리학 분류를 위한 다중 인스턴스 학습 방법 -
dc.title.alternative MULTIPLE INSTANCE LEARNING FOR HISTOPATHOLOGY CLASSIFICATION -
dc.type Patent -
dc.identifier.bibliographicCitation Philip Chikontwe. 조직 병리학 분류를 위한 다중 인스턴스 학습 방법. -
dc.publisher.country KO -
dc.identifier.patentApplicationNumber 10-2020-0047888 -
dc.date.application 2020-04-21 -
dc.identifier.patentRegistrationNumber 10-2495367 -
dc.date.registration 2023-01-30 -
dc.contributor.assignee (재)대구경북과학기술원(100/100) -
dc.type.iprs 특허 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

박상현
Park, Sang Hyun박상현

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads